{"title":"Hemodynamic Mechanisms Initiating Salt-Sensitive Hypertension in Rat Model of Primary Aldosteronism.","authors":"M Pravenec, P Mlejnek, M Šimáková, J Šilhavý","doi":"10.33549/physiolres.935260","DOIUrl":null,"url":null,"abstract":"<p><p>Few studies have investigated the hemodynamic mechanism whereby primary hyperaldosteronism causes hypertension. The traditional view holds that hyperaldosteronism initiates hypertension by amplifying salt-dependent increases in cardiac output (CO) by promoting increases in sodium retention and blood volume. Systemic vascular resistance (SVR) is said to increase only as a secondary consequence of the increased CO and blood pressure. Recently, we investigated the primary hemodynamic mechanism whereby hyperaldosteronism promotes salt sensitivity and initiation of salt-dependent hypertension. In unilaterally nephrectomized male Sprague-Dawley rats given infusions of aldosterone or vehicle, we found that aldosterone promoted salt sensitivity and initiation of salt-dependent hypertension by amplifying salt-induced increases in SVR while decreasing CO. In addition, we validated mathematical models of human integrative physiology, derived from Guyton's classic 1972 model - Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4. Neither model accurately predicted the usual changes in sodium balance, CO, and SVR that normally occur in response to clinically realistic increases in salt intake. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models. Together these findings challenge the traditional view of the hemodynamic mechanisms that cause salt-sensitive hypertension in primary aldosteronism. Key words: Aldosterone, Blood pressure, Salt, Sodium, Rat.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33549/physiolres.935260","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Few studies have investigated the hemodynamic mechanism whereby primary hyperaldosteronism causes hypertension. The traditional view holds that hyperaldosteronism initiates hypertension by amplifying salt-dependent increases in cardiac output (CO) by promoting increases in sodium retention and blood volume. Systemic vascular resistance (SVR) is said to increase only as a secondary consequence of the increased CO and blood pressure. Recently, we investigated the primary hemodynamic mechanism whereby hyperaldosteronism promotes salt sensitivity and initiation of salt-dependent hypertension. In unilaterally nephrectomized male Sprague-Dawley rats given infusions of aldosterone or vehicle, we found that aldosterone promoted salt sensitivity and initiation of salt-dependent hypertension by amplifying salt-induced increases in SVR while decreasing CO. In addition, we validated mathematical models of human integrative physiology, derived from Guyton's classic 1972 model - Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4. Neither model accurately predicted the usual changes in sodium balance, CO, and SVR that normally occur in response to clinically realistic increases in salt intake. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models. Together these findings challenge the traditional view of the hemodynamic mechanisms that cause salt-sensitive hypertension in primary aldosteronism. Key words: Aldosterone, Blood pressure, Salt, Sodium, Rat.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.