{"title":"Challenges and directions for digital twin implementation in otorhinolaryngology.","authors":"Alexandre Vallée","doi":"10.1007/s00405-024-08662-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital twin technology heralds a transformative era in Otorhinolaryngology (ORL), merging the physical and digital worlds to offer dynamic, virtual models of physical entities or processes.</p><p><strong>Purpose: </strong>These models, capable of simulating, predicting, and optimizing real-world counterparts, are evolving from static replicas to intelligent, adaptive systems.</p><p><strong>Methods: </strong>Fueled by advancements in communication, sensor technology, big data analytics, Internet of Things (IoT), and simulation technologies, artificial intelligence (AI), digital twins in ORL promise personalized treatment planning, virtual experimentation, and therapeutic intervention optimization. Despite their potential, the integration of digital twins in ORL faces challenges including data privacy and security, data integration and interoperability, computational demands, model validation and accuracy, ethical and regulatory considerations, patient engagement, and cost and accessibility issues.</p><p><strong>Results: </strong>Overcoming these challenges requires robust data protection measures, seamless data integration, substantial computational resources, rigorous validation studies, ethical transparency, patient education, and making the technology accessible and affordable. Looking ahead, the future of digital twins in ORL is bright, with advancements in AI and machine learning, omics data integration, real-time monitoring, virtual clinical trials, patient empowerment, seamless healthcare integration, longitudinal data analysis, and collaborative research.</p><p><strong>Conclusion: </strong>These developments promise to refine diagnostic and treatment strategies, enhance patient care, and facilitate more efficient and tailored ORL research, ultimately leading to more effective and personalized ORL management.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00405-024-08662-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Digital twin technology heralds a transformative era in Otorhinolaryngology (ORL), merging the physical and digital worlds to offer dynamic, virtual models of physical entities or processes.
Purpose: These models, capable of simulating, predicting, and optimizing real-world counterparts, are evolving from static replicas to intelligent, adaptive systems.
Methods: Fueled by advancements in communication, sensor technology, big data analytics, Internet of Things (IoT), and simulation technologies, artificial intelligence (AI), digital twins in ORL promise personalized treatment planning, virtual experimentation, and therapeutic intervention optimization. Despite their potential, the integration of digital twins in ORL faces challenges including data privacy and security, data integration and interoperability, computational demands, model validation and accuracy, ethical and regulatory considerations, patient engagement, and cost and accessibility issues.
Results: Overcoming these challenges requires robust data protection measures, seamless data integration, substantial computational resources, rigorous validation studies, ethical transparency, patient education, and making the technology accessible and affordable. Looking ahead, the future of digital twins in ORL is bright, with advancements in AI and machine learning, omics data integration, real-time monitoring, virtual clinical trials, patient empowerment, seamless healthcare integration, longitudinal data analysis, and collaborative research.
Conclusion: These developments promise to refine diagnostic and treatment strategies, enhance patient care, and facilitate more efficient and tailored ORL research, ultimately leading to more effective and personalized ORL management.
期刊介绍:
Official Journal of
European Union of Medical Specialists – ORL Section and Board
Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery
"European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level.
European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.