Chiara E. Hampton, Stephanie A. Kleine, Joe S. Smith, Pierre-Yves Mulon, Christopher K. Smith, Gregory A. Shanks, Lucille Ruth Vanecek, Reza Seddighi, Sherry Cox
{"title":"Pharmacokinetics of oral clonazepam in growing commercial pigs (Sus scrofa domestica)","authors":"Chiara E. Hampton, Stephanie A. Kleine, Joe S. Smith, Pierre-Yves Mulon, Christopher K. Smith, Gregory A. Shanks, Lucille Ruth Vanecek, Reza Seddighi, Sherry Cox","doi":"10.1111/jvp.13451","DOIUrl":null,"url":null,"abstract":"<p>Clonazepam causes sedation and psychomotor impairment in people. Due to similarities between people and swine in response to benzodiazepines, clonazepam may represent a viable option to produce mild-to-moderate tranquillization in pigs. The objective of this study was to determine the pharmacokinetic profile of a single oral dose (0.5 mg/kg) of clonazepam in eight healthy, growing commercial cross pigs. Serial plasma samples were collected at baseline and up to 96 h after administration. Plasma concentrations were quantified using reverse-phase high-performance liquid chromatography, and compartment models were fit to time–concentration data. A one-compartment first-order model best fits the data. Maximum plasma concentration was 99.5 ng/mL, and time to maximum concentration was 3.4 h. Elimination half-life was 7.3 h, mean residence time 7.4 h, and apparent volume of distribution 5.7 L/kg. Achieved plasma concentrations exceeded those associated with psychomotor impairment in people although pharmacodynamic effects have not been investigated in pigs. A simulated oral regimen consisting of 0.35 mg/kg administered every 8 h to pigs would achieve plasma concentrations above 32 ng/mL which are shown to produce psychomotor impairment in people. Further studies to test the clinical efficacy of these dosages in commercial and miniature pigs are warranted.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of veterinary pharmacology and therapeutics","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvp.13451","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Clonazepam causes sedation and psychomotor impairment in people. Due to similarities between people and swine in response to benzodiazepines, clonazepam may represent a viable option to produce mild-to-moderate tranquillization in pigs. The objective of this study was to determine the pharmacokinetic profile of a single oral dose (0.5 mg/kg) of clonazepam in eight healthy, growing commercial cross pigs. Serial plasma samples were collected at baseline and up to 96 h after administration. Plasma concentrations were quantified using reverse-phase high-performance liquid chromatography, and compartment models were fit to time–concentration data. A one-compartment first-order model best fits the data. Maximum plasma concentration was 99.5 ng/mL, and time to maximum concentration was 3.4 h. Elimination half-life was 7.3 h, mean residence time 7.4 h, and apparent volume of distribution 5.7 L/kg. Achieved plasma concentrations exceeded those associated with psychomotor impairment in people although pharmacodynamic effects have not been investigated in pigs. A simulated oral regimen consisting of 0.35 mg/kg administered every 8 h to pigs would achieve plasma concentrations above 32 ng/mL which are shown to produce psychomotor impairment in people. Further studies to test the clinical efficacy of these dosages in commercial and miniature pigs are warranted.
期刊介绍:
The Journal of Veterinary Pharmacology and Therapeutics (JVPT) is an international journal devoted to the publication of scientific papers in the basic and clinical aspects of veterinary pharmacology and toxicology, whether the study is in vitro, in vivo, ex vivo or in silico. The Journal is a forum for recent scientific information and developments in the discipline of veterinary pharmacology, including toxicology and therapeutics. Studies that are entirely in vitro will not be considered within the scope of JVPT unless the study has direct relevance to the use of the drug (including toxicants and feed additives) in veterinary species, or that it can be clearly demonstrated that a similar outcome would be expected in vivo. These studies should consider approved or widely used veterinary drugs and/or drugs with broad applicability to veterinary species.