Yu Yan, Shuzheng Huang, Yu Zeng, Siyuan Yue, Tong Wang, Lin Yuan, Junhui Nie
{"title":"Long-Term Disinfection in Operating Rooms Affects Skin Microbiota and Metabolites of Medical Personnel.","authors":"Yu Yan, Shuzheng Huang, Yu Zeng, Siyuan Yue, Tong Wang, Lin Yuan, Junhui Nie","doi":"10.1159/000539100","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Disinfectants play a critical role in reducing healthcare-associated infections by eliminating microorganisms on surfaces. However, prolonged use of disinfectants may adversely affect the skin microflora, essential for skin health and infection prevention. This study investigates the impact of disinfection on the skin microbiota and metabolites of medical personnel in operating rooms, aiming to provide a scientific foundation for safeguarding their skin health.</p><p><strong>Methods: </strong>We conducted 16S sequencing and metabolomic analysis to assess the effects of disinfection on the skin microbiota and metabolites of medical personnel. Samples were collected from operating room personnel after disinfectant exposure to identify changes in microbial communities and metabolite profiles.</p><p><strong>Results: </strong>Our analysis revealed that prolonged use of disinfectants led to alterations in skin microbial communities and microbial metabolites. These alterations included the production of harmful metabolites that could potentially promote skin infections and other health issues among medical personnel.</p><p><strong>Conclusion: </strong>The findings underscore the importance of minimizing disruptions to skin microbiota and metabolites caused by long-term disinfectant use to preserve the overall health of medical personnel. This study provides valuable insights into the relationship between disinfectant use, skin microbiota, and metabolites, highlighting the necessity for further research in this area.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"19-31"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skin Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Disinfectants play a critical role in reducing healthcare-associated infections by eliminating microorganisms on surfaces. However, prolonged use of disinfectants may adversely affect the skin microflora, essential for skin health and infection prevention. This study investigates the impact of disinfection on the skin microbiota and metabolites of medical personnel in operating rooms, aiming to provide a scientific foundation for safeguarding their skin health.
Methods: We conducted 16S sequencing and metabolomic analysis to assess the effects of disinfection on the skin microbiota and metabolites of medical personnel. Samples were collected from operating room personnel after disinfectant exposure to identify changes in microbial communities and metabolite profiles.
Results: Our analysis revealed that prolonged use of disinfectants led to alterations in skin microbial communities and microbial metabolites. These alterations included the production of harmful metabolites that could potentially promote skin infections and other health issues among medical personnel.
Conclusion: The findings underscore the importance of minimizing disruptions to skin microbiota and metabolites caused by long-term disinfectant use to preserve the overall health of medical personnel. This study provides valuable insights into the relationship between disinfectant use, skin microbiota, and metabolites, highlighting the necessity for further research in this area.
期刊介绍:
In the past decade research into skin pharmacology has rapidly developed with new and promising drugs and therapeutic concepts being introduced regularly. Recently, the use of nanoparticles for drug delivery in dermatology and cosmetology has become a topic of intensive research, yielding remarkable and in part surprising results. Another topic of current research is the use of tissue tolerable plasma in wound treatment. Stimulating not only wound healing processes but also the penetration of topically applied substances into the skin, this novel technique is expected to deliver very interesting results.