Chenguang Wei, Anni Vanhatalo, Matthew I. Black, Jamie R. Blackwell, Raghini Rajaram, Stefan Kadach, Andrew M. Jones
{"title":"Relationships between nitric oxide biomarkers and physiological outcomes following dietary nitrate supplementation","authors":"Chenguang Wei, Anni Vanhatalo, Matthew I. Black, Jamie R. Blackwell, Raghini Rajaram, Stefan Kadach, Andrew M. Jones","doi":"10.1016/j.niox.2024.04.010","DOIUrl":null,"url":null,"abstract":"<div><p>Dietary nitrate (NO<sub>3</sub><sup>−</sup>) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO<sub>2</sub><sup>−</sup>]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup>, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO<sub>3</sub><sup>−</sup> supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO<sub>3</sub><sup>−</sup>-rich beetroot juice (BR) (∼12.8 mmol NO<sub>3</sub><sup>−</sup>) and NO<sub>3</sub><sup>−</sup>-depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5–3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (−2 ± 3 mmHg, <em>P</em> = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0–30 ms (39 ± 57 N m s<sup>−1</sup>, <em>P</em> = 0.03) and 0–50 ms (79 ± 99 N m s<sup>−1</sup>, <em>P</em> = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO<sub>2</sub><sup>−</sup>] was correlated with lower diastolic BP (<em>r</em> = −0.68, <em>P</em> = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO<sub>3</sub><sup>−</sup>] was correlated with greater RTD at 0–30 ms (<em>r</em> = 0.64<em>, P=</em>0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO<sub>3</sub><sup>−</sup>] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO<sub>3</sub><sup>−</sup> ingestion in humans.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S108986032400065X/pdfft?md5=aef4e36cffba5496c4beadf4d7c9713d&pid=1-s2.0-S108986032400065X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108986032400065X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary nitrate (NO3−) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2−]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3−, NO2−, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3− supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3−-rich beetroot juice (BR) (∼12.8 mmol NO3−) and NO3−-depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5–3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (−2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0–30 ms (39 ± 57 N m s−1, P = 0.03) and 0–50 ms (79 ± 99 N m s−1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2−] was correlated with lower diastolic BP (r = −0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3−] was correlated with greater RTD at 0–30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3−] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3− ingestion in humans.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.