Junxiu Nong, Shengqiang Shen, Fan Hong, Fan Xiao, Lingtian Meng, Pilong Li, Xiaoguang Lei, Ye-Guang Chen
{"title":"Verteporfin inhibits TGF-β signaling by disrupting the Smad2/3-Smad4 interaction.","authors":"Junxiu Nong, Shengqiang Shen, Fan Hong, Fan Xiao, Lingtian Meng, Pilong Li, Xiaoguang Lei, Ye-Guang Chen","doi":"10.1091/mbc.E24-02-0073","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar95"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-02-0073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.