Nana Svane, Alberte Bay Villekjær Pedersen, Anne Rodenberg, Burak Ozgür, Lasse Saaby, Christoffer Bundgaard, Mie Kristensen, Peer Tfelt-Hansen, Birger Brodin
{"title":"The putative proton-coupled organic cation antiporter is involved in uptake of triptans into human brain capillary endothelial cells.","authors":"Nana Svane, Alberte Bay Villekjær Pedersen, Anne Rodenberg, Burak Ozgür, Lasse Saaby, Christoffer Bundgaard, Mie Kristensen, Peer Tfelt-Hansen, Birger Brodin","doi":"10.1186/s12987-024-00544-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H<sup>+</sup>/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp).</p><p><strong>Methods: </strong>We investigated the cellular uptake characteristics of the prototypical H<sup>+</sup>/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice.</p><p><strong>Results: </strong>We demonstrated that most triptans were able to inhibit uptake of the H<sup>+</sup>/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent K<sub>m</sub> of 89 ± 38 µM and a J<sub>max</sub> of 2.2 ± 0.7 nmol·min<sup>-1</sup>·mg protein<sup>-1</sup> (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H<sup>+</sup>/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (K<sub>p,uu</sub>) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice.</p><p><strong>Conclusions: </strong>We have demonstrated that the triptan family of compounds possesses affinity for the H<sup>+</sup>/OC antiporter proposing that the putative H<sup>+</sup>/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H<sup>+</sup>/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"39"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00544-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp).
Methods: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice.
Results: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice.
Conclusions: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).