{"title":"Modelling the impact of precaution on disease dynamics and its evolution.","authors":"Tianyu Cheng, Xingfu Zou","doi":"10.1007/s00285-024-02100-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> . For <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing \"adopting the best response\" with \"adapting toward the best response\", we also explore the adaptive long-term dynamics.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 1","pages":"1"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02100-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number . For , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing "adopting the best response" with "adapting toward the best response", we also explore the adaptive long-term dynamics.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.