Kyuseon Jang, Mi-Yang Kim, Chanwon Jung, Se-Ho Kim, Daechul Choi, Seong-Chan Park, Christina Scheu, Pyuck-Pa Choi
{"title":"Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography.","authors":"Kyuseon Jang, Mi-Yang Kim, Chanwon Jung, Se-Ho Kim, Daechul Choi, Seong-Chan Park, Christina Scheu, Pyuck-Pa Choi","doi":"10.1093/mam/ozae032","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately controlling trace additives in dielectric barium titanate (BaTiO3) layers is important for optimizing the performance of multilayer ceramic capacitors (MLCCs). However, characterizing the spatial distribution and local concentration of the additives, which strongly influence the MLCC performance, poses a significant challenge. Atom probe tomography (APT) is an ideal technique for obtaining this information, but the extremely low electrical conductivity and piezoelectricity of BaTiO3 render its analysis with existing sample preparation approaches difficult. In this study, we developed a new APT sample preparation method involving W coating and heat treatment to investigate the trace additives in the BaTiO3 layer of MLCCs. This method enables determination of the local concentration and distribution of all trace elements in the BaTiO3 layer, including additives and undesired impurities. The developed method is expected to pave the way for the further optimization and advancement of MLCC technology.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"1047-1056"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately controlling trace additives in dielectric barium titanate (BaTiO3) layers is important for optimizing the performance of multilayer ceramic capacitors (MLCCs). However, characterizing the spatial distribution and local concentration of the additives, which strongly influence the MLCC performance, poses a significant challenge. Atom probe tomography (APT) is an ideal technique for obtaining this information, but the extremely low electrical conductivity and piezoelectricity of BaTiO3 render its analysis with existing sample preparation approaches difficult. In this study, we developed a new APT sample preparation method involving W coating and heat treatment to investigate the trace additives in the BaTiO3 layer of MLCCs. This method enables determination of the local concentration and distribution of all trace elements in the BaTiO3 layer, including additives and undesired impurities. The developed method is expected to pave the way for the further optimization and advancement of MLCC technology.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.