{"title":"Competing risks and multivariate outcomes in epidemiological and clinical trial research.","authors":"R L Prentice","doi":"10.1007/s10985-024-09629-8","DOIUrl":null,"url":null,"abstract":"<p><p>Data analysis methods for the study of treatments or exposures in relation to a clinical outcome in the presence of competing risks have a long history, often with inference targets that are hypothetical, thereby requiring strong assumptions for identifiability with available data. Here data analysis methods are considered that are based on single and higher dimensional marginal hazard rates, quantities that are identifiable under standard independent censoring assumptions. These lead naturally to joint survival function estimators for outcomes of interest, including competing risk outcomes, and provide the basis for addressing a variety of data analysis questions. These methods will be illustrated using simulations and Women's Health Initiative cohort and clinical trial data sets, and additional research needs will be described.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09629-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Data analysis methods for the study of treatments or exposures in relation to a clinical outcome in the presence of competing risks have a long history, often with inference targets that are hypothetical, thereby requiring strong assumptions for identifiability with available data. Here data analysis methods are considered that are based on single and higher dimensional marginal hazard rates, quantities that are identifiable under standard independent censoring assumptions. These lead naturally to joint survival function estimators for outcomes of interest, including competing risk outcomes, and provide the basis for addressing a variety of data analysis questions. These methods will be illustrated using simulations and Women's Health Initiative cohort and clinical trial data sets, and additional research needs will be described.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.