Experimental and Theoretical Rotational Diffusion Studies of 7DM4M1M1,8, N-2(1H)-one and 7A4T2H1B-2-one in Series of Alcohol Solvents: Stoke's-Einstein-Debye and Alavi-Waldeck Models.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Fluorescence Pub Date : 2025-05-01 Epub Date: 2024-04-30 DOI:10.1007/s10895-024-03707-8
Anil Kumar, C G Renuka
{"title":"Experimental and Theoretical Rotational Diffusion Studies of 7DM4M1M1,8, N-2(1H)-one and 7A4T2H1B-2-one in Series of Alcohol Solvents: Stoke's-Einstein-Debye and Alavi-Waldeck Models.","authors":"Anil Kumar, C G Renuka","doi":"10.1007/s10895-024-03707-8","DOIUrl":null,"url":null,"abstract":"<p><p>Rotational diffusion studies of two solutes 7-(dimethylamino)-4-methoxy-1-methyl-1,8-naphthyridin-2(1H)-one (7DM4M1M1,8, N-2(1H)-one) and 7-amino-4-(trifluoromethyl)-2H-1-benzopyran-2-one (7A4T2H1B-2-one) having equal volumes but different chemical natures are studied in series of alcohol solvents at 303 K using steady-state methods. HOMO-LUMO, Electron density, Molecular electrostatic potential (MEP), etc., are obtained from computational calculations using Gaussian 09 software. Rotational reorientation times of 7DM4M1M1,8, N-2(1H)-one solute molecule is found to be less than 7A4T2H1B-2-one solute molecule indicates it rotates slowly in chosen solvents. Stoke's-Einstein-Debye (SED) model with stick boundary conditions for the 7A4T2H1B-2-one solute molecule is modeled to describe mechanical friction. Polar solutes along with mechanical friction also experience dielectric friction. Both these frictions being non-separable, the Alavi-Waldeck (AW) model is studied for dielectric friction contribution to the total friction solute experiences in solvents. AW model effectively explains the observed dielectric friction in alcohol solvents.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2963-2978"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03707-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rotational diffusion studies of two solutes 7-(dimethylamino)-4-methoxy-1-methyl-1,8-naphthyridin-2(1H)-one (7DM4M1M1,8, N-2(1H)-one) and 7-amino-4-(trifluoromethyl)-2H-1-benzopyran-2-one (7A4T2H1B-2-one) having equal volumes but different chemical natures are studied in series of alcohol solvents at 303 K using steady-state methods. HOMO-LUMO, Electron density, Molecular electrostatic potential (MEP), etc., are obtained from computational calculations using Gaussian 09 software. Rotational reorientation times of 7DM4M1M1,8, N-2(1H)-one solute molecule is found to be less than 7A4T2H1B-2-one solute molecule indicates it rotates slowly in chosen solvents. Stoke's-Einstein-Debye (SED) model with stick boundary conditions for the 7A4T2H1B-2-one solute molecule is modeled to describe mechanical friction. Polar solutes along with mechanical friction also experience dielectric friction. Both these frictions being non-separable, the Alavi-Waldeck (AW) model is studied for dielectric friction contribution to the total friction solute experiences in solvents. AW model effectively explains the observed dielectric friction in alcohol solvents.

Abstract Image

7DM4M1M1,8, N-2(1H)-one 和 7A4T2H1B-2-one 在一系列酒精溶剂中的实验和理论旋转扩散研究:斯托克-爱因斯坦-德贝模型和阿拉维-瓦尔德克模型。
采用稳态方法,在 303 K 温度下的一系列醇溶剂中研究了两种溶质 7-(二甲基氨基)-4-甲氧基-1-甲基-1,8-萘啶-2(1H)-酮(7DM4M1M1,8, N-2(1H)-one)和 7-氨基-4-(三氟甲基)-2H-1-苯并吡喃-2-酮(7A4T2H1B-2-one)的旋转扩散,这两种溶质的体积相等,但化学性质不同。HOMO-LUMO、电子密度、分子静电位(MEP)等数据都是通过高斯 09 软件计算得出的。结果发现,7DM4M1M1,8, N-2(1H)-1溶质分子的旋转重新定向时间小于 7A4T2H1B-2-1溶质分子,这表明它在所选溶剂中的旋转速度较慢。7A4T2H1B-2-one 溶质分子的斯托克-爱因斯坦-德贝(SED)模型带有粘性边界条件,用于描述机械摩擦。极性溶质在经历机械摩擦的同时也会经历介电摩擦。由于这两种摩擦是不可分离的,因此研究了 Alavi-Waldeck(AW)模型,以了解介电摩擦对溶质在溶剂中总摩擦力的影响。AW 模型有效地解释了在酒精溶剂中观察到的介电摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信