{"title":"MBORS: Mosquito vector Biocontrol Ontology and Recommendation System.","authors":"G Jeyakodi, P Shanthi Bala, O T Sruthi, K Swathi","doi":"10.4103/0972-9062.383640","DOIUrl":null,"url":null,"abstract":"<p><strong>Background objectives: </strong>Mosquito vectors are disease-causing insects, responsible for various life-threatening vector-borne diseases such as dengue, Zika, malaria, chikungunya, and lymphatic filariasis. In practice, synthetic insecticides are used to control the mosquito vector, but, the continuous usage of synthetic insecticides is toxic to human health resulting in communicable diseases. Non-toxic biocontrol agents such as bacteria, fungus, plants, and mosquito densoviruses play a vital role in controlling mosquitoes. Community awareness of mosquito biocontrol agents is required to control vector-borne diseases. Mosquito vector-based ontology facilitates mosquito biocontrol by providing information such as species names, pathogen-associated diseases, and biological controlling agents. It helps to explore the associations among the mosquitoes and their biocontrol agents in the form of rules. The Mosquito vector-based Biocontrol Ontology Recommendation System (MBORS) provides the knowledge on mosquito-associated biocontrol agents to control the vector at the early stage of the mosquitoes such as eggs, larvae, pupae, and adults. This paper proposes MBORS for the prevention and effective control of vector-borne diseases. The Mosquito Vector Association ontology (MVAont) suggests the appropriate mosquito vector biocontrol agents (MosqVecRS) for related diseases.</p><p><strong>Methods: </strong>Natural Language Processing and Data mining are employed to develop the MBORS. While Tokenization, Part-of-speech Tagging (POS), Named Entity Recognition (NER), and rule-based text mining techniques are used to identify the mosquito ontology concepts, the data mining apriori algorithm is used to predict the associations among them.</p><p><strong>Results: </strong>The outcome of the MBORS results in MVAont as Web Ontology Language (OWL) representation and MosqVecRS as an Android application. The developed ontology and recommendation system are freely available on the web portal.</p><p><strong>Interpretation conclusion: </strong>The MVAont predicts harmless biocontrol agents which help to diminish the rate of vector-borne diseases. On the other hand, the MosqVecRS system raises awareness of vectors and vector-borne diseases by recommending suitable biocontrol agents to the vector control community and researchers.</p>","PeriodicalId":17660,"journal":{"name":"Journal of Vector Borne Diseases","volume":"61 1","pages":"51-60"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0972-9062.383640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background objectives: Mosquito vectors are disease-causing insects, responsible for various life-threatening vector-borne diseases such as dengue, Zika, malaria, chikungunya, and lymphatic filariasis. In practice, synthetic insecticides are used to control the mosquito vector, but, the continuous usage of synthetic insecticides is toxic to human health resulting in communicable diseases. Non-toxic biocontrol agents such as bacteria, fungus, plants, and mosquito densoviruses play a vital role in controlling mosquitoes. Community awareness of mosquito biocontrol agents is required to control vector-borne diseases. Mosquito vector-based ontology facilitates mosquito biocontrol by providing information such as species names, pathogen-associated diseases, and biological controlling agents. It helps to explore the associations among the mosquitoes and their biocontrol agents in the form of rules. The Mosquito vector-based Biocontrol Ontology Recommendation System (MBORS) provides the knowledge on mosquito-associated biocontrol agents to control the vector at the early stage of the mosquitoes such as eggs, larvae, pupae, and adults. This paper proposes MBORS for the prevention and effective control of vector-borne diseases. The Mosquito Vector Association ontology (MVAont) suggests the appropriate mosquito vector biocontrol agents (MosqVecRS) for related diseases.
Methods: Natural Language Processing and Data mining are employed to develop the MBORS. While Tokenization, Part-of-speech Tagging (POS), Named Entity Recognition (NER), and rule-based text mining techniques are used to identify the mosquito ontology concepts, the data mining apriori algorithm is used to predict the associations among them.
Results: The outcome of the MBORS results in MVAont as Web Ontology Language (OWL) representation and MosqVecRS as an Android application. The developed ontology and recommendation system are freely available on the web portal.
Interpretation conclusion: The MVAont predicts harmless biocontrol agents which help to diminish the rate of vector-borne diseases. On the other hand, the MosqVecRS system raises awareness of vectors and vector-borne diseases by recommending suitable biocontrol agents to the vector control community and researchers.
期刊介绍:
National Institute of Malaria Research on behalf of Indian Council of Medical Research (ICMR) publishes the Journal of Vector Borne Diseases. This Journal was earlier published as the Indian Journal of Malariology, a peer reviewed and open access biomedical journal in the field of vector borne diseases. The Journal publishes review articles, original research articles, short research communications, case reports of prime importance, letters to the editor in the field of vector borne diseases and their control.