Deep learning in bioinformatics.

Turkish journal of biology = Turk biyoloji dergisi Pub Date : 2023-12-18 eCollection Date: 2023-01-01 DOI:10.55730/1300-0152.2671
Malik Yousef, Jens Allmer
{"title":"Deep learning in bioinformatics.","authors":"Malik Yousef, Jens Allmer","doi":"10.55730/1300-0152.2671","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning is a powerful machine learning technique that can learn from large amounts of data using multiple layers of artificial neural networks. This paper reviews some applications of deep learning in bioinformatics, a field that deals with analyzing and interpreting biological data. We first introduce the basic concepts of deep learning and then survey the recent advances and challenges of applying deep learning to various bioinformatics problems, such as genome sequencing, gene expression analysis, protein structure prediction, drug discovery, and disease diagnosis. We also discuss future directions and opportunities for deep learning in bioinformatics. We aim to provide an overview of deep learning so that bioinformaticians applying deep learning models can consider all critical technical and ethical aspects. Thus, our target audience is biomedical informatics researchers who use deep learning models for inference. This review will inspire more bioinformatics researchers to adopt deep-learning methods for their research questions while considering fairness, potential biases, explainability, and accountability.</p>","PeriodicalId":94363,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"47 6","pages":"366-382"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning is a powerful machine learning technique that can learn from large amounts of data using multiple layers of artificial neural networks. This paper reviews some applications of deep learning in bioinformatics, a field that deals with analyzing and interpreting biological data. We first introduce the basic concepts of deep learning and then survey the recent advances and challenges of applying deep learning to various bioinformatics problems, such as genome sequencing, gene expression analysis, protein structure prediction, drug discovery, and disease diagnosis. We also discuss future directions and opportunities for deep learning in bioinformatics. We aim to provide an overview of deep learning so that bioinformaticians applying deep learning models can consider all critical technical and ethical aspects. Thus, our target audience is biomedical informatics researchers who use deep learning models for inference. This review will inspire more bioinformatics researchers to adopt deep-learning methods for their research questions while considering fairness, potential biases, explainability, and accountability.

生物信息学中的深度学习
深度学习是一种强大的机器学习技术,可以利用多层人工神经网络从大量数据中学习。本文回顾了深度学习在生物信息学中的一些应用,生物信息学是一个涉及分析和解释生物数据的领域。我们首先介绍了深度学习的基本概念,然后调查了将深度学习应用于各种生物信息学问题(如基因组测序、基因表达分析、蛋白质结构预测、药物发现和疾病诊断)的最新进展和挑战。我们还讨论了深度学习在生物信息学领域的未来发展方向和机遇。我们旨在提供深度学习的概述,以便应用深度学习模型的生物信息学家能够考虑到所有关键的技术和伦理问题。因此,我们的目标读者是使用深度学习模型进行推理的生物医学信息学研究人员。这篇综述将激励更多生物信息学研究人员在考虑公平性、潜在偏差、可解释性和责任的同时,采用深度学习方法来解决他们的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信