Veera Tikkanen, Johanna Krüger, Anna-Leena Heikkinen, Tuomo Hänninen, Christer Hublin, Anne M Koivisto, Jussi Virkkala, Toni T Saari, Anne M Remes, Teemu I Paajanen
{"title":"A Novel Computerized Flexible Attention Test in Detecting Executive Dysfunction of Patients with Early-Onset Cognitive Impairment and Dementia.","authors":"Veera Tikkanen, Johanna Krüger, Anna-Leena Heikkinen, Tuomo Hänninen, Christer Hublin, Anne M Koivisto, Jussi Virkkala, Toni T Saari, Anne M Remes, Teemu I Paajanen","doi":"10.1093/arclin/acae026","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The number of computer-based cognitive tests has increased in recent years, but there is a need for tests focusing on the assessment of executive function (EF), as it can be crucial for the identification of early-onset neurodegenerative disorders. This study aims to examine the ability of the Flexible Attention Test (FAT), a new computer-based test battery for detecting executive dysfunction of early-onset cognitive impairment and dementia patients.</p><p><strong>Method: </strong>We analyzed the FAT subtask results in memory clinic patients with cognitive symptom onset at ≤65 years. The patients were divided into four groups: early onset dementia (EOD, n = 48), mild cognitive impairment due to neurological causes (MCI-n, n = 34), MCI due to other causes (MCI-o, n = 99), and subjective cognitive decline (SCD, n = 14). The test accuracy to distinguish EOD patients from other groups was examined, as well as correlations with pen-and-paper EF tests. We also reported the 12-months follow-up results.</p><p><strong>Results: </strong>The EOD and MCI-n patients performed significantly poorer (p ≤ .002) than those in the MCI-o and SCD groups in most of the FAT subtasks. The accuracies of the FAT subtasks to detect EOD from other causes were mainly moderate (0.34 ≤ area under the curve < 0.74). The FAT subtasks correlated logically with corresponding pen-and-paper EF tests (.15 ≤ r ≤ .75). No systematic learning effects were detected in the FAT performance at follow-up.</p><p><strong>Conclusions: </strong>The FAT appears to be a promising method for the precise evaluation of EF and applicable distinguishing early-onset neurodegenerative disorders from patients with other causes of cognitive problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/arclin/acae026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The number of computer-based cognitive tests has increased in recent years, but there is a need for tests focusing on the assessment of executive function (EF), as it can be crucial for the identification of early-onset neurodegenerative disorders. This study aims to examine the ability of the Flexible Attention Test (FAT), a new computer-based test battery for detecting executive dysfunction of early-onset cognitive impairment and dementia patients.
Method: We analyzed the FAT subtask results in memory clinic patients with cognitive symptom onset at ≤65 years. The patients were divided into four groups: early onset dementia (EOD, n = 48), mild cognitive impairment due to neurological causes (MCI-n, n = 34), MCI due to other causes (MCI-o, n = 99), and subjective cognitive decline (SCD, n = 14). The test accuracy to distinguish EOD patients from other groups was examined, as well as correlations with pen-and-paper EF tests. We also reported the 12-months follow-up results.
Results: The EOD and MCI-n patients performed significantly poorer (p ≤ .002) than those in the MCI-o and SCD groups in most of the FAT subtasks. The accuracies of the FAT subtasks to detect EOD from other causes were mainly moderate (0.34 ≤ area under the curve < 0.74). The FAT subtasks correlated logically with corresponding pen-and-paper EF tests (.15 ≤ r ≤ .75). No systematic learning effects were detected in the FAT performance at follow-up.
Conclusions: The FAT appears to be a promising method for the precise evaluation of EF and applicable distinguishing early-onset neurodegenerative disorders from patients with other causes of cognitive problems.