Classification of colon cancer patients into consensus molecular subtypes using support vector machines.

Turkish journal of biology = Turk biyoloji dergisi Pub Date : 2023-12-15 eCollection Date: 2023-01-01 DOI:10.55730/1300-0152.2674
Necla Koçhan, Barış Emre Dayanç
{"title":"Classification of colon cancer patients into consensus molecular subtypes using support vector machines.","authors":"Necla Koçhan, Barış Emre Dayanç","doi":"10.55730/1300-0152.2674","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles.</p><p><strong>Materials and methods: </strong>We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log-rank test. We then classified patients using support vector machines with backward elimination methodology.</p><p><strong>Results: </strong>We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics.</p><p><strong>Conclusion: </strong>We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group.</p>","PeriodicalId":94363,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"47 6","pages":"406-412"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles.

Materials and methods: We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log-rank test. We then classified patients using support vector machines with backward elimination methodology.

Results: We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics.

Conclusion: We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group.

利用支持向量机将结肠癌患者分为一致认可的分子亚型。
背景/目的:结肠癌的分子异质性使得肿瘤分类成为有效治疗的必要条件。结肠癌亚型鉴定联盟(Colorectal Cancer Subtyping Consortium)制定的共识分子亚型(CMS)是对结肠癌患者进行分子亚型鉴定的方法之一。CMS 特异性 RNA-Seq 依赖性分类方法是最近才出现的,灵敏度和特异性相对较低。在本研究中,我们旨在利用患者的RNA-seq图谱将其分为CMS组:我们首先使用模糊 C-Means 算法和对数秩检验确定了亚型特异性基因和生存相关基因。然后,我们使用支持向量机和反向排除法对患者进行分类:我们优化了基于 RNA-seq 的分类,使用了 25 个分类错误率最小的基因。在本研究中,我们使用精确度、灵敏度、特异性、误诊率和平衡准确率指标报告了分类性能:我们提出了一个分类错误率最低的结肠癌分类基因列表,并观察到 CMS3 相关基因的灵敏度最低,但特异性最高,由于该组临床患者人数较少,因此灵敏度和特异性存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信