Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2024-03-01 DOI:10.1116/6.0003437
Timo Weintraut, Sven Heiles, Dennis Gerbig, Anja Henss, Johannes Junck, Rolf-Alexander Düring, Marcus Rohnke
{"title":"Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity.","authors":"Timo Weintraut, Sven Heiles, Dennis Gerbig, Anja Henss, Johannes Junck, Rolf-Alexander Düring, Marcus Rohnke","doi":"10.1116/6.0003437","DOIUrl":null,"url":null,"abstract":"<p><p>In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.

ToF-SIMS 和基质辅助激光解吸电离质谱成像对蚯蚓样品中除草剂阿特拉津的脂质相关离子抑制作用以及气相碱性的作用。
在质谱成像(MSI)中,离子抑制会导致对结果的误读。特别是磷脂,其中大部分都具有高气相碱性(GB),众所周知会抑制代谢物和药物的检测。本研究的起因是观察到一种除草剂(即阿特拉津)的信号在蚯蚓组织切片的 MSI 检测中被抑制。通过飞行时间二次离子质谱法和基质辅助激光解吸电离质谱成像(MALDI-MSI)研究了除草剂在蚯蚓体内的积累情况。此外,还分析了没有阿特拉津积累但除草剂均匀喷雾沉积的蚯蚓组织切片,以突出特定区域的离子抑制。此外,两种 MSI 技术还研究了脂质、氨基酸和阿特拉津二元混合物中信号强度与 GB 的关系。通过对所获得的二元氨基酸混合物的强度比进行线性绘制,从实验和理论上确定了阿特拉津的国标。在 ToF-SIMS 和 MALDI-MSI 中,实验测定的阿特拉津的 GB 值分别为 896 和 906 kJ/mol,933 和 987 kJ/mol;通过量子力学计算,阿特拉津的 GB 值为 913 kJ/mol。与主要脂质成分磷脂酰胆碱的 GB 值(GBPC = 1044.7 kJ/mol)相比,阿特拉津的实验和计算所确定的 GB 值要低得多,因此在含有极性脂质的生物样品中容易受到离子抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信