Enhancing antibacterial properties of titanium implants through a novel Ag-TiO2-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Yu Jiang, Zhou Wan, Qi Liu, Xinxin Li, Bo Jiang, Mudan Guo, Pengjue Fan, Siyi Du, Doudou Xu, Chen Liu
{"title":"Enhancing antibacterial properties of titanium implants through a novel Ag-TiO<sub>2</sub>-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach.","authors":"Yu Jiang, Zhou Wan, Qi Liu, Xinxin Li, Bo Jiang, Mudan Guo, Pengjue Fan, Siyi Du, Doudou Xu, Chen Liu","doi":"10.1080/09205063.2024.2344332","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent biocompatibility and mechanical properties. However, bacterial adhesion and subsequent biofilm formation on implant surfaces pose a significant risk of postoperative infections and complications. Conventional surface modifications often lack long-lasting antibacterial efficacy, necessitating the development of novel coatings with enhanced antimicrobial properties. This study aims to develop a novel Ag-TiO<sub>2</sub>-OTS (Silver-Titanium dioxide-Octadecyltrichlorosilane, ATO) nanocomposite coating, through a chemical plating method. By employing a 'resist-killing-disintegrate' approach, the coating is designed to inhibit bacterial adhesion effectively, and facilitate pollutant removal with lasting effects. Characterization of the coatings was performed using spectroscopy, electron microscopy, and contact angle analysis. Antibacterial efficacy, quantitatively evaluated against <i>E. coli</i> and <i>S. aureus</i> over 168 h, showed a significant reduction in bacterial adhesion by 76.6% and 66.5% respectively, and bacterial removal rates were up to 83.8% and 73.3% in comparison to uncoated Ti-base material. Additionally, antibacterial assays indicated that the ratio of the Lifshitz-van der Waals apolar component to electron donor surface energy components significantly influences bacterial adhesion and removal, underscoring a tunable parameter for optimizing antibacterial surfaces. Biocompatibility assessments with the L929 cell line revealed that the ATO coatings exhibited excellent biocompatibility, with minimal cytotoxicity and no significant impact on cell proliferation or apoptosis. The ATO coatings provided a multi-functionality surface that not only resists bacterial colonization but also possesses self-cleaning capabilities, thereby marking a substantial advancement in the development of antibacterial coatings for medical implants.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2344332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent biocompatibility and mechanical properties. However, bacterial adhesion and subsequent biofilm formation on implant surfaces pose a significant risk of postoperative infections and complications. Conventional surface modifications often lack long-lasting antibacterial efficacy, necessitating the development of novel coatings with enhanced antimicrobial properties. This study aims to develop a novel Ag-TiO2-OTS (Silver-Titanium dioxide-Octadecyltrichlorosilane, ATO) nanocomposite coating, through a chemical plating method. By employing a 'resist-killing-disintegrate' approach, the coating is designed to inhibit bacterial adhesion effectively, and facilitate pollutant removal with lasting effects. Characterization of the coatings was performed using spectroscopy, electron microscopy, and contact angle analysis. Antibacterial efficacy, quantitatively evaluated against E. coli and S. aureus over 168 h, showed a significant reduction in bacterial adhesion by 76.6% and 66.5% respectively, and bacterial removal rates were up to 83.8% and 73.3% in comparison to uncoated Ti-base material. Additionally, antibacterial assays indicated that the ratio of the Lifshitz-van der Waals apolar component to electron donor surface energy components significantly influences bacterial adhesion and removal, underscoring a tunable parameter for optimizing antibacterial surfaces. Biocompatibility assessments with the L929 cell line revealed that the ATO coatings exhibited excellent biocompatibility, with minimal cytotoxicity and no significant impact on cell proliferation or apoptosis. The ATO coatings provided a multi-functionality surface that not only resists bacterial colonization but also possesses self-cleaning capabilities, thereby marking a substantial advancement in the development of antibacterial coatings for medical implants.

通过新型 Ag-TiO2-OTS 纳米复合涂层增强钛植入物的抗菌性能:关于抗药性杀灭-分解方法的综合研究。
钛(Ti)植入物具有良好的生物相容性和机械性能,因此被广泛应用于整形外科和牙科领域。然而,植入体表面的细菌粘附和随后形成的生物膜会带来术后感染和并发症的巨大风险。传统的表面改性往往缺乏持久的抗菌效果,因此有必要开发具有更强抗菌性能的新型涂层。本研究旨在通过化学镀方法开发一种新型 Ag-TiO2-OTS(银-二氧化钛-十八烷基三氯硅烷,ATO)纳米复合涂层。该涂层采用 "阻力-杀灭-分解 "的方法,可有效抑制细菌附着,并能持久清除污染物。涂层的表征采用了光谱学、电子显微镜和接触角分析法。对大肠杆菌和金黄色葡萄球菌的抗菌效果进行了 168 小时的定量评估,结果表明,与未涂层的钛基材料相比,细菌粘附率分别显著降低了 76.6% 和 66.5%,细菌去除率分别高达 83.8% 和 73.3%。此外,抗菌测试表明,Lifshitz-van der Waals 极性成分与电子供体表面能成分的比例对细菌的粘附和清除有显著影响,突出表明这是优化抗菌表面的一个可调参数。用 L929 细胞系进行的生物相容性评估表明,ATO 涂层具有极佳的生物相容性,细胞毒性极低,对细胞增殖或凋亡无明显影响。ATO 涂层提供了一种多功能表面,不仅能抵抗细菌定植,还具有自清洁能力,从而标志着医疗植入物抗菌涂层的开发取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信