Body composition analysis by radiological imaging - methods, applications, and prospects.

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Nicolas Linder, Timm Denecke, Harald Busse
{"title":"Body composition analysis by radiological imaging - methods, applications, and prospects.","authors":"Nicolas Linder, Timm Denecke, Harald Busse","doi":"10.1055/a-2263-1501","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> This review discusses the quantitative assessment of tissue composition in the human body (body composition, BC) using radiological methods. Such analyses are gaining importance, in particular, for oncological and metabolic problems. The aim is to present the different methods and definitions in this field to a radiological readership in order to facilitate application and dissemination of BC methods. The main focus is on radiological cross-sectional imaging.</p><p><strong>Methods: </strong> The review is based on a recent literature search in the US National Library of Medicine catalog (pubmed.gov) using appropriate search terms (body composition, obesity, sarcopenia, osteopenia in conjunction with imaging and radiology, respectively), as well as our own work and experience, particularly with MRI- and CT-based analyses of abdominal fat compartments and muscle groups.</p><p><strong>Results and conclusion: </strong> Key post-processing methods such as segmentation of tomographic datasets are now well established and used in numerous clinical disciplines, including bariatric surgery. Validated reference values are required for a reliable assessment of radiological measures, such as fatty liver or muscle. Artificial intelligence approaches (deep learning) already enable the automated segmentation of different tissues and compartments so that the extensive datasets can be processed in a time-efficient manner - in the case of so-called opportunistic screening, even retrospectively from diagnostic examinations. The availability of analysis tools and suitable datasets for AI training is considered a limitation.</p><p><strong>Key points: </strong>  · Radiological imaging methods are increasingly used to determine body composition (BC).. · BC parameters are usually quantitative and well reproducible.. · CT image data from routine clinical examinations can be used retrospectively for BC analysis.. · Prospectively, MRI examinations can be used to determine organ-specific BC parameters.. · Automated and in-depth analysis methods (deep learning or radiomics) appear to become important in the future..</p><p><strong>Citation format: </strong>· Linder N, Denecke T, Busse H. Body composition analysis by radiological imaging - methods, applications, and prospects. Fortschr Röntgenstr 2024; 196: 1046 - 1054.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":"1046-1054"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2263-1501","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background:  This review discusses the quantitative assessment of tissue composition in the human body (body composition, BC) using radiological methods. Such analyses are gaining importance, in particular, for oncological and metabolic problems. The aim is to present the different methods and definitions in this field to a radiological readership in order to facilitate application and dissemination of BC methods. The main focus is on radiological cross-sectional imaging.

Methods:  The review is based on a recent literature search in the US National Library of Medicine catalog (pubmed.gov) using appropriate search terms (body composition, obesity, sarcopenia, osteopenia in conjunction with imaging and radiology, respectively), as well as our own work and experience, particularly with MRI- and CT-based analyses of abdominal fat compartments and muscle groups.

Results and conclusion:  Key post-processing methods such as segmentation of tomographic datasets are now well established and used in numerous clinical disciplines, including bariatric surgery. Validated reference values are required for a reliable assessment of radiological measures, such as fatty liver or muscle. Artificial intelligence approaches (deep learning) already enable the automated segmentation of different tissues and compartments so that the extensive datasets can be processed in a time-efficient manner - in the case of so-called opportunistic screening, even retrospectively from diagnostic examinations. The availability of analysis tools and suitable datasets for AI training is considered a limitation.

Key points:   · Radiological imaging methods are increasingly used to determine body composition (BC).. · BC parameters are usually quantitative and well reproducible.. · CT image data from routine clinical examinations can be used retrospectively for BC analysis.. · Prospectively, MRI examinations can be used to determine organ-specific BC parameters.. · Automated and in-depth analysis methods (deep learning or radiomics) appear to become important in the future..

Citation format: · Linder N, Denecke T, Busse H. Body composition analysis by radiological imaging - methods, applications, and prospects. Fortschr Röntgenstr 2024; 196: 1046 - 1054.

通过放射成像进行人体成分分析--方法、应用和前景。
背景:本综述讨论利用放射学方法对人体组织成分(身体成分,BC)进行定量评估。这类分析越来越重要,特别是在肿瘤和代谢问题方面。目的是向放射学读者介绍该领域的不同方法和定义,以促进 BC 方法的应用和推广。主要侧重于放射学横断面成像:本综述基于最近在美国国家医学图书馆目录(pubmed.gov)中使用适当的检索词(身体成分、肥胖、肌少症、骨质疏松症,分别与影像学和放射学相结合)进行的文献检索,以及我们自己的工作和经验,特别是基于 MRI 和 CT 的腹部脂肪区和肌肉群分析:关键的后处理方法,如断层扫描数据集的分割,现已在包括减肥手术在内的众多临床学科中得到广泛应用。要对脂肪肝或肌肉等放射学指标进行可靠的评估,需要经过验证的参考值。人工智能方法(深度学习)已经能够自动分割不同的组织和区块,这样就能以一种省时高效的方式处理大量数据集--在所谓的机会性筛查中,甚至可以从诊断检查中进行回溯。用于人工智能培训的分析工具和合适数据集的可用性被认为是一个限制因素:- 放射成像方法越来越多地用于确定身体成分(BC)。- BC参数通常是定量的,并且具有良好的可重复性。- 常规临床检查的 CT 图像数据可用于回顾性 BC 分析。- MRI检查可用于前瞻性地确定特定器官的BC参数。- 自动和深入分析方法(深度学习或放射组学)在未来将变得非常重要:- Linder N, Denecke T, Busse H.通过放射成像进行身体成分分析--方法、应用和前景。Fortschr Röntgenstr 2024; DOI: 10.1055/a-2263-1501.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信