An update on the taxonomy and functional properties of the probiotic Enterococcus faecium SF68.

IF 3 4区 医学 Q2 MICROBIOLOGY
C M A P Franz, B Pot, M G Vizoso-Pinto, A Arini, R Coppolecchia, W H Holzapfel
{"title":"An update on the taxonomy and functional properties of the probiotic Enterococcus faecium SF68.","authors":"C M A P Franz, B Pot, M G Vizoso-Pinto, A Arini, R Coppolecchia, W H Holzapfel","doi":"10.1163/18762891-bja00005","DOIUrl":null,"url":null,"abstract":"<p><p>Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":"15 2","pages":"211-225"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.

关于益生菌粪肠球菌 SF68 的分类和功能特性的最新进展。
粪肠球菌 SF68(SF68)是一种著名的益生菌,有着悠久的安全使用历史。最近肠球菌分类学的变化表明,一种新的物种乳酸肠球菌与粪肠球菌关系密切,并与其他肠球菌一起出现在一个系统发育明确的粪肠球菌物种组中。粪肠球菌和乳酸肠球菌之间密切的系统发育关系促使人们对粪肠球菌 SF68 的分类地位进行更深入的研究。利用系统发生组学和 ANI,本研究中的分类分析表明,益生菌粪肠球菌 SF68 与其他粪肠球菌和乳杆菌类型及参考菌株相比,可被重新归类为属于乳杆菌属。对 SF68 功能特性的进一步研究表明,SF68 有可能生产细菌素,因为在质粒 pF9 的操作子中发现了一个细菌素基因簇,该基因簇编码无头细菌素 EntK1 以及假定乳球菌细菌素 LsbA 和 LsbB 样假定免疫肽(LmrB)。但没有研究细菌素的表达。在 37 °C下共培养 7 天的竞争性排斥实验表明,益生菌 SF68 可抑制特定的粪肠球菌和李斯特菌株的生长,而对肠道侵袭性大肠杆菌和鼠伤寒沙门氏菌的抑制活性很小或没有。在结肠癌 HT29 细胞的细胞培养实验中,益生菌 SF68 还能针对菌株特异性地抑制肠球菌和单增球菌菌株的黏附和/或侵袭,而对大肠杆菌和沙门氏菌菌株的这种黏附和侵袭抑制作用则不太明显。因此,本研究为 SF68 的分类和功能特性提供了新数据,可将其重新归类为乳酸肠球菌 SF68,从而加深对其益生菌性质的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信