A descending pathway from the lateral/ventrolateral PAG to the rostroventral medulla mediating the vasomotor response evoked by social defeat stress in rats.
{"title":"A descending pathway from the lateral/ventrolateral PAG to the rostroventral medulla mediating the vasomotor response evoked by social defeat stress in rats.","authors":"Mio Matsuyama, Jouji Horiuchi","doi":"10.1152/ajpregu.00295.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.<b>NEW & NOTEWORTHY</b> The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00295.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.NEW & NOTEWORTHY The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.