Experience-Dependent Behavioral Plasticity in Avoiding Epigallocatechin Gallate (EGCG) Requires DAF-16/FOXO in the AIY Interneurons of Caenorhabditis elegans.
Seiryu Ishikawa, Yuka Takezawa, Chiharu Iida, Yuko Yamada, Kyoko Chiba, Mohammad Shaokat Ali, Simo Sun, Eriko Kage-Nakadai
{"title":"Experience-Dependent Behavioral Plasticity in Avoiding Epigallocatechin Gallate (EGCG) Requires DAF-16/FOXO in the AIY Interneurons of Caenorhabditis elegans.","authors":"Seiryu Ishikawa, Yuka Takezawa, Chiharu Iida, Yuko Yamada, Kyoko Chiba, Mohammad Shaokat Ali, Simo Sun, Eriko Kage-Nakadai","doi":"10.3177/jnsv.70.164","DOIUrl":null,"url":null,"abstract":"<p><p>Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.</p>","PeriodicalId":16624,"journal":{"name":"Journal of nutritional science and vitaminology","volume":"70 2","pages":"164-173"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional science and vitaminology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3177/jnsv.70.164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.
期刊介绍:
The Journal of Nutritional Science and Vitaminology is an international medium publishing in English of original work in all branches of nutritional science, food science and vitaminology from any country.
Manuscripts submitted for publication should be as concise as possible and must be based on the results of original research or of original interpretation of existing knowledge not previously published. Although data may have been reported, in part, in preliminary or
abstract form, a full report of such research is unacceptable if it has been or will be submitted for consideration by another journal.