Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Charlotte Rypens, Christophe Van Berckelaer, Fedor Berditchevski, Peter van Dam, Steven Van Laere
{"title":"Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models.","authors":"Charlotte Rypens, Christophe Van Berckelaer, Fedor Berditchevski, Peter van Dam, Steven Van Laere","doi":"10.1016/bs.ircmb.2023.10.006","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"384 ","pages":"77-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.10.006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.

通过对患者样本和临床前模型进行分子鉴定,破译炎性乳腺癌的分子生物学。
炎性乳腺癌是乳腺癌的一种侵袭性亚型,患者预后不良,临床表现独特。在过去的二十年中,分子图谱分析技术已被用于深入了解 IBC 的分子生物学特性,并寻找可能的治疗靶点。虽然已经确定了能准确区分 IBC 和 nIBC 患者样本和临床前模型的基因特征,但基因组和转录组的总体差异较小且不明确,这主要是由于所评估的患者系列样本量有限,而且未能校正分子亚型的混杂效应。不过,独立研究小组在过去 20 年中收集的数据越来越多地支持 IBC 存在几种特异性生物学特征。在本综述中,根据文献报道的证据水平,将这些特征分为已确立的特征、新出现的特征和概念性特征。此外,本文还提出了一个综合模型,该模型整合了所有特征,可解释癌细胞内在机制(即 NF-κB 激活、基因组不稳定性、MYC 上瘾、TGF-β 抗性、适应性应激反应、染色质重塑、上皮细胞向间质转化)如何有助于建立与 IBC 相关的动态免疫微环境。因此,未来的研究项目需要进一步完善该模型的(部分)内容,并研究其临床转化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International review of cell and molecular biology
International review of cell and molecular biology BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
7.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信