Helen Moor, Ariel Bergamini, Christoph Vorburger, Rolf Holderegger, Christoph Bühler, Nicolas Bircher, Benedikt R Schmidt
{"title":"Building pondscapes for amphibian metapopulations.","authors":"Helen Moor, Ariel Bergamini, Christoph Vorburger, Rolf Holderegger, Christoph Bühler, Nicolas Bircher, Benedikt R Schmidt","doi":"10.1111/cobi.14281","DOIUrl":null,"url":null,"abstract":"<p><p>The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered. We fitted dynamic occupancy models to 20 years of monitoring data on a pond construction program to quantify effects of pond and landscape characteristics and different connectivity metrics on colonization and persistence probabilities in constructed ponds. Connectivity to existing populations explained dynamics better than structural connectivity metrics, and simple metrics (distance to the nearest neighbor population, population density) were useful surrogates for dispersal kernel-weighted metrics commonly used in metapopulation theory. Population connectivity mediated the persistence of conservation target species in new ponds, suggesting source-sink dynamics in newly established populations. Population density captured this effect well and could be used by practitioners for site selection. Ponds created where there were 2-4 occupied ponds within a radius of ∼0.5 km had >3.5 times higher incidence of target species (median) than isolated ponds. Species had individual preferences regarding pond characteristics, but breeding sites with larger (≥100 m<sup>2</sup>) total water surface area, that temporarily dried, and that were in surroundings with maximally 50% forest benefitted multiple target species. Pond diversity will foster amphibian diversity at the landscape scale.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered. We fitted dynamic occupancy models to 20 years of monitoring data on a pond construction program to quantify effects of pond and landscape characteristics and different connectivity metrics on colonization and persistence probabilities in constructed ponds. Connectivity to existing populations explained dynamics better than structural connectivity metrics, and simple metrics (distance to the nearest neighbor population, population density) were useful surrogates for dispersal kernel-weighted metrics commonly used in metapopulation theory. Population connectivity mediated the persistence of conservation target species in new ponds, suggesting source-sink dynamics in newly established populations. Population density captured this effect well and could be used by practitioners for site selection. Ponds created where there were 2-4 occupied ponds within a radius of ∼0.5 km had >3.5 times higher incidence of target species (median) than isolated ponds. Species had individual preferences regarding pond characteristics, but breeding sites with larger (≥100 m2) total water surface area, that temporarily dried, and that were in surroundings with maximally 50% forest benefitted multiple target species. Pond diversity will foster amphibian diversity at the landscape scale.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.