Nicolás Glison, Paola Gaiero, Eliana Monteverde, Pablo R Speranza
{"title":"Breeding for reduced seed dormancy to domesticate new grass species.","authors":"Nicolás Glison, Paola Gaiero, Eliana Monteverde, Pablo R Speranza","doi":"10.1590/1678-4685-GMB-2023-0262","DOIUrl":null,"url":null,"abstract":"<p><p>Introducing new grass species into cultivation has long been proposed as beneficial to increase the sustainability and diversity of productive systems. However, wild species with potential tend to show high seed dormancy, causing slow, poor, and unsynchronized seedling emergence. Meanwhile, domesticated species, such as cereals, show lower seed dormancy, facilitating their successful establishment. In this work, we conduct a review of phenotypic variation on seed dormancy and its genetic and molecular basis. This quantitative and highly heritable trait shows phenotype plasticity which is modulated by environmental factors. The level of dormancy depends on the expression of genes associated with the metabolism and sensitivity to the hormones abscisic acid (ABA) and gibberellins (GA), along with other dormancy-specific genes. The genetic regulation of these traits is highly conserved across species. The low seed dormancy observed in cereals and some temperate forages was mostly unconsciously selected during various domestication processes. Emphasis is placed on selecting materials with low seed dormancy for warm-season forage grasses to improve their establishment and adoption. Finally, we review advances in the domestication of dallisgrass, where seed dormancy was considered a focus trait throughout the process.</p>","PeriodicalId":12557,"journal":{"name":"Genetics and Molecular Biology","volume":"47Suppl 1 Suppl 1","pages":"e20230262"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0262","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introducing new grass species into cultivation has long been proposed as beneficial to increase the sustainability and diversity of productive systems. However, wild species with potential tend to show high seed dormancy, causing slow, poor, and unsynchronized seedling emergence. Meanwhile, domesticated species, such as cereals, show lower seed dormancy, facilitating their successful establishment. In this work, we conduct a review of phenotypic variation on seed dormancy and its genetic and molecular basis. This quantitative and highly heritable trait shows phenotype plasticity which is modulated by environmental factors. The level of dormancy depends on the expression of genes associated with the metabolism and sensitivity to the hormones abscisic acid (ABA) and gibberellins (GA), along with other dormancy-specific genes. The genetic regulation of these traits is highly conserved across species. The low seed dormancy observed in cereals and some temperate forages was mostly unconsciously selected during various domestication processes. Emphasis is placed on selecting materials with low seed dormancy for warm-season forage grasses to improve their establishment and adoption. Finally, we review advances in the domestication of dallisgrass, where seed dormancy was considered a focus trait throughout the process.
期刊介绍:
Genetics and Molecular Biology (formerly named Revista Brasileira de Genética/Brazilian Journal of Genetics - ISSN 0100-8455) is published by the Sociedade Brasileira de Genética (Brazilian Society of Genetics).
The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. Manuscripts presenting methods and applications only, without an analysis of genetic data, will not be considered.