Co-exposure to lead and high-fat diet aggravates systemic inflammation in mice by altering gut microbiota and the LPS/TLR4 pathway.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metallomics Pub Date : 2024-05-02 DOI:10.1093/mtomcs/mfae022
Nana Wang, Changhao Li, Xue Gao, Yuan Huo, Yuting Li, Fangru Cheng, Fei Jiang, Zengli Zhang
{"title":"Co-exposure to lead and high-fat diet aggravates systemic inflammation in mice by altering gut microbiota and the LPS/TLR4 pathway.","authors":"Nana Wang, Changhao Li, Xue Gao, Yuan Huo, Yuting Li, Fangru Cheng, Fei Jiang, Zengli Zhang","doi":"10.1093/mtomcs/mfae022","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the toxicity of Pb exposure on systemic inflammation in high-fat-diet (HFD) mice and the potential mechanisms. Results indicated that Pb exacerbated intestinal barrier damage and increased serum levels of lipopolysaccharide (LPS) and diamine oxidase in HFD mice. Elevated LPS activates the colonic and ileal LPS-TLR4 inflammatory signaling pathway and further induces hepatic and adipose inflammatory expression. The 16S rRNA gene sequencing results showed that Pb promoted the abundance of potentially harmful and LPS-producing bacteria such as Coriobacteriaceae_UCG-002, Alloprevotella, and Oscillibacter in the intestines of HFD mice, and their abundance was positively correlated with LPS levels. Additionally, Pb inhibited the abundance of the beneficial bacteria Akkermansia, resulting in lower levels of the metabolite short-chain fatty acids (SCFAs). Meanwhile, Pb inhibited adenosine 5'-monophosphate-activated protein kinase signaling-mediated lipid metabolism pathways, promoting hepatic lipid accumulation. The above results suggest that Pb exacerbates systemic inflammation and lipid disorders in HFD mice by altering the gut microbiota, intestinal barrier, and the mediation of metabolites LPS and SCFAs. Our study provides potential novel mechanisms of human health related to Pb-induced metabolic damage and offers new evidence for a comprehensive assessment of Pb risk.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the toxicity of Pb exposure on systemic inflammation in high-fat-diet (HFD) mice and the potential mechanisms. Results indicated that Pb exacerbated intestinal barrier damage and increased serum levels of lipopolysaccharide (LPS) and diamine oxidase in HFD mice. Elevated LPS activates the colonic and ileal LPS-TLR4 inflammatory signaling pathway and further induces hepatic and adipose inflammatory expression. The 16S rRNA gene sequencing results showed that Pb promoted the abundance of potentially harmful and LPS-producing bacteria such as Coriobacteriaceae_UCG-002, Alloprevotella, and Oscillibacter in the intestines of HFD mice, and their abundance was positively correlated with LPS levels. Additionally, Pb inhibited the abundance of the beneficial bacteria Akkermansia, resulting in lower levels of the metabolite short-chain fatty acids (SCFAs). Meanwhile, Pb inhibited adenosine 5'-monophosphate-activated protein kinase signaling-mediated lipid metabolism pathways, promoting hepatic lipid accumulation. The above results suggest that Pb exacerbates systemic inflammation and lipid disorders in HFD mice by altering the gut microbiota, intestinal barrier, and the mediation of metabolites LPS and SCFAs. Our study provides potential novel mechanisms of human health related to Pb-induced metabolic damage and offers new evidence for a comprehensive assessment of Pb risk.

通过改变肠道微生物群和 LPS/TLR4 通路,共同暴露于铅和高脂饮食会加重小鼠的全身炎症。
本研究报告了铅暴露对高脂饮食(HFD)小鼠全身炎症的毒性及其潜在机制。结果表明,铅加剧了高脂饮食小鼠肠屏障的损伤,并增加了血清中脂多糖(LPS)和二胺氧化酶的水平。升高的 LPS 会激活结肠和回肠的 LPS-TLR4 炎症信号通路,并进一步诱导肝脏和脂肪的炎症表达。16S rRNA 基因测序结果表明,铅促进了高氟酸小鼠肠道中潜在的有害产LPS细菌(如Coriobacteriaceae_UCG-002、Alloprevotella和Oscillibacter)的丰度,且其丰度与LPS水平呈正相关。此外,铅抑制了有益菌 Akkermansia 的数量,导致代谢产物 SCFAs 水平降低。同时,铅抑制了腺苷-5'-单磷酸激活的蛋白激酶信号介导的脂质代谢途径,促进了肝脏脂质积累。上述结果表明,铅通过改变肠道微生物群、肠道屏障以及代谢产物 LPS 和 SCFAs 的介导作用,加剧了高密度脂蛋白饮食小鼠的全身炎症和脂质紊乱。我们的研究提供了与铅诱导的代谢损伤相关的人类健康潜在新机制,并为全面评估铅风险提供了新证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信