Rekha Kumari, Asha Singh, Rozi Sharma, Piyush Malaviya
{"title":"Conversion of food waste into energy and value-added products: a review","authors":"Rekha Kumari, Asha Singh, Rozi Sharma, Piyush Malaviya","doi":"10.1007/s10311-024-01742-2","DOIUrl":null,"url":null,"abstract":"<div><p>Food waste production reaches actually about 1.3 billion tonnes per year, corresponding to the emission of 3.3 billion tonnes equivalent of CO<sub>2</sub>, thus calling for improved recycling. Here we review food waste conversion into energy and products such as biohydrogen, biogas, biofuel, biodiesel, biochar, bioplastics, fertilizers, animal feed, organic acids, enzymes, and proteins. Food waste can be treated by incineration, pyrolysis, composting, anaerobic digestion, hydrothermal carbonization, and landfilling. Properties of food waste influence the efficiency of conversion.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1759 - 1790"},"PeriodicalIF":15.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01742-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Food waste production reaches actually about 1.3 billion tonnes per year, corresponding to the emission of 3.3 billion tonnes equivalent of CO2, thus calling for improved recycling. Here we review food waste conversion into energy and products such as biohydrogen, biogas, biofuel, biodiesel, biochar, bioplastics, fertilizers, animal feed, organic acids, enzymes, and proteins. Food waste can be treated by incineration, pyrolysis, composting, anaerobic digestion, hydrothermal carbonization, and landfilling. Properties of food waste influence the efficiency of conversion.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.