Bionic functional membranes for separation of oil-in-water emulsions

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-05-01 DOI:10.1007/s40544-023-0819-6
Chaolang Chen, Ruisong Jiang, Zhiguang Guo
{"title":"Bionic functional membranes for separation of oil-in-water emulsions","authors":"Chaolang Chen, Ruisong Jiang, Zhiguang Guo","doi":"10.1007/s40544-023-0819-6","DOIUrl":null,"url":null,"abstract":"<p>The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human health. Membrane technology is considered an outstanding solution strategy for the separation of oil-in-water emulsions due to its unique advantages of low cost, high efficiency, easy operation, and environmental friendliness. However, the membrane is easily fouled by the emulsion oil droplets during the separation process, causing a sharp decline in permeation flux, which greatly inhibits the long-term use of the membrane and largely shortens the membrane’s life. Recently, it was found that endowing the membranes with special wettability e.g., superhydrophilic and superoleophobic can greatly enhance the permeability of the continuous water phase and inhibit the adhesion of oil droplets, thus promoting the separation performance and anti-oil-fouling property of membrane for oily emulsions. In this paper, we review and discuss the recent developments in membranes with special wettability for separating oil-in-water emulsions, including the mechanism analysis of emulsion separation membrane, membrane fouling issues, design strategies, and representative studies for enhancing the membrane’s anti-oil-fouling ability and emulsion separation performance.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"61 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0819-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human health. Membrane technology is considered an outstanding solution strategy for the separation of oil-in-water emulsions due to its unique advantages of low cost, high efficiency, easy operation, and environmental friendliness. However, the membrane is easily fouled by the emulsion oil droplets during the separation process, causing a sharp decline in permeation flux, which greatly inhibits the long-term use of the membrane and largely shortens the membrane’s life. Recently, it was found that endowing the membranes with special wettability e.g., superhydrophilic and superoleophobic can greatly enhance the permeability of the continuous water phase and inhibit the adhesion of oil droplets, thus promoting the separation performance and anti-oil-fouling property of membrane for oily emulsions. In this paper, we review and discuss the recent developments in membranes with special wettability for separating oil-in-water emulsions, including the mechanism analysis of emulsion separation membrane, membrane fouling issues, design strategies, and representative studies for enhancing the membrane’s anti-oil-fouling ability and emulsion separation performance.

Abstract Image

用于分离水包油型乳液的仿生功能膜
水包油型乳液的大量生产和排放给生态系统带来了严重危害,并对人类健康造成了严重威胁,因此水包油型乳液的分离是一项紧迫的挑战。膜技术因其成本低、效率高、操作简便、环境友好等独特优势,被认为是分离水包油型乳液的最佳解决方案。然而,膜在分离过程中很容易被乳状液油滴玷污,导致渗透通量急剧下降,极大地阻碍了膜的长期使用,大大缩短了膜的使用寿命。最近研究发现,赋予膜特殊的润湿性,如超亲水性和超疏水性,可以大大提高连续水相的渗透性,抑制油滴的附着,从而提高油乳剂膜的分离性能和防油污性能。本文回顾并讨论了具有特殊润湿性的水包油乳液分离膜的最新发展,包括乳液分离膜的机理分析、膜堵塞问题、设计策略,以及提高膜抗油堵能力和乳液分离性能的代表性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信