Anne R. Wondisford, Junyeop Lee, Robert Lu, Marion Schuller, Josephine Groslambert, Ragini Bhargava, Sandra Schamus-Haynes, Leyneir C. Cespedes, Patricia L. Opresko, Hilda A. Pickett, Jaewon Min, Ivan Ahel, Roderick J. O’Sullivan
{"title":"Deregulated DNA ADP-ribosylation impairs telomere replication","authors":"Anne R. Wondisford, Junyeop Lee, Robert Lu, Marion Schuller, Josephine Groslambert, Ragini Bhargava, Sandra Schamus-Haynes, Leyneir C. Cespedes, Patricia L. Opresko, Hilda A. Pickett, Jaewon Min, Ivan Ahel, Roderick J. O’Sullivan","doi":"10.1038/s41594-024-01279-6","DOIUrl":null,"url":null,"abstract":"The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3′ single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability. Telomeres are endogenous cellular targets of DNA ADP-ribosylation (DNA-ADPr). TARG1-regulated DNA-ADPr is coupled to lagging telomere DNA strand synthesis, and persistent DNA-ADPr, due to TARG1 deficiency, leads to telomere shortening and fragility.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 5","pages":"791-800"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01279-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01279-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3′ single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability. Telomeres are endogenous cellular targets of DNA ADP-ribosylation (DNA-ADPr). TARG1-regulated DNA-ADPr is coupled to lagging telomere DNA strand synthesis, and persistent DNA-ADPr, due to TARG1 deficiency, leads to telomere shortening and fragility.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.