Fluid evolution of the Lindero porphyry gold deposit, NW Argentina: the critical role of salt melts in ore formation

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Valeria Simόn, Peter Koděra, Volker Lüders, Robert B. Trumbull, Marcelo Arnosio, Emilce Bustos, Louis Desanois, Marta Sośnicka, Cora Wohlgemuth-Ueberwasser
{"title":"Fluid evolution of the Lindero porphyry gold deposit, NW Argentina: the critical role of salt melts in ore formation","authors":"Valeria Simόn, Peter Koděra, Volker Lüders, Robert B. Trumbull, Marcelo Arnosio, Emilce Bustos, Louis Desanois, Marta Sośnicka, Cora Wohlgemuth-Ueberwasser","doi":"10.1007/s00126-024-01275-2","DOIUrl":null,"url":null,"abstract":"<p>The Lindero deposit is located in the Puna plateau, northwest Argentina, at the southern end of the Central Volcanic Zone of the Central Andes. The high-K calc-alkaline dioritic composition of the subvolcanic intrusions, the shallow emplacement depth (&lt; 1.5 km), and the gold-rich and copper-depleted mineralization style suggest that the Lindero deposit is a porphyry gold deposit. Porphyry gold deposits are scarce worldwide and the factors controlling their formation are still poorly known. Here we present a detailed study of fluid inclusions in order to characterize the mineralizing fluids that precipitated the Au mineralization at Lindero. Different types of fluid inclusions in quartz veins (A-type and banded quartz), which are associated with the K-silicate alteration, were analyzed using Raman spectroscopy, microthermometry, and LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry). Four inclusion types can be recognized in quartz veins: (i) Salt melt inclusions, which are characterized by a dense packing of daughter minerals (mainly Fe-chloride, sylvite, halite, anhydrite, and hematite), by a distorted vapor bubble, and by the lack of liquid phase; (ii) Halite-bearing inclusions which contain liquid, vapor, and halite; (iii) Two-phase aqueous inclusions that contain liquid and vapor; (iv) Vapor-rich inclusions containing only vapor. The inclusion types are related to different stages of hydrothermal evolution. Stage 1 is the main mineralization stage, characterized by vapor-rich inclusions coexisting with salt melt inclusions. Salt melt inclusions commonly show total homogenization temperature (Th<sub>L</sub>) &gt; 1000 °C. This Na-K-Fe-Cl-rich highly saline brine (~ 90 wt% NaCl eq.) was of magmatic origin and responsible for the Au mineralization. Two later stages involving cooler fluids (Th<sub>L</sub> &lt; 300 °C) and gradually lower salinities (from 36.1 to 0.2 wt% NaCl eq.) trapped by halite-bearing and two-phase aqueous inclusions during stages 2 and 3, respectively, correspond to a late magmatic-hydrothermal system, that is probably related to a deep supercritical fluid exsolution. Salt melt inclusions represent the most likely parental fluid of K-silicate alteration and associated Au mineralization at Lindero. This uncommon type of fluid must have played an important role in Au transport and precipitation in shallow porphyry gold deposits.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"18 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01275-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Lindero deposit is located in the Puna plateau, northwest Argentina, at the southern end of the Central Volcanic Zone of the Central Andes. The high-K calc-alkaline dioritic composition of the subvolcanic intrusions, the shallow emplacement depth (< 1.5 km), and the gold-rich and copper-depleted mineralization style suggest that the Lindero deposit is a porphyry gold deposit. Porphyry gold deposits are scarce worldwide and the factors controlling their formation are still poorly known. Here we present a detailed study of fluid inclusions in order to characterize the mineralizing fluids that precipitated the Au mineralization at Lindero. Different types of fluid inclusions in quartz veins (A-type and banded quartz), which are associated with the K-silicate alteration, were analyzed using Raman spectroscopy, microthermometry, and LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry). Four inclusion types can be recognized in quartz veins: (i) Salt melt inclusions, which are characterized by a dense packing of daughter minerals (mainly Fe-chloride, sylvite, halite, anhydrite, and hematite), by a distorted vapor bubble, and by the lack of liquid phase; (ii) Halite-bearing inclusions which contain liquid, vapor, and halite; (iii) Two-phase aqueous inclusions that contain liquid and vapor; (iv) Vapor-rich inclusions containing only vapor. The inclusion types are related to different stages of hydrothermal evolution. Stage 1 is the main mineralization stage, characterized by vapor-rich inclusions coexisting with salt melt inclusions. Salt melt inclusions commonly show total homogenization temperature (ThL) > 1000 °C. This Na-K-Fe-Cl-rich highly saline brine (~ 90 wt% NaCl eq.) was of magmatic origin and responsible for the Au mineralization. Two later stages involving cooler fluids (ThL < 300 °C) and gradually lower salinities (from 36.1 to 0.2 wt% NaCl eq.) trapped by halite-bearing and two-phase aqueous inclusions during stages 2 and 3, respectively, correspond to a late magmatic-hydrothermal system, that is probably related to a deep supercritical fluid exsolution. Salt melt inclusions represent the most likely parental fluid of K-silicate alteration and associated Au mineralization at Lindero. This uncommon type of fluid must have played an important role in Au transport and precipitation in shallow porphyry gold deposits.

Abstract Image

阿根廷西北部林德罗斑岩金矿床的流体演化:盐熔体在矿石形成中的关键作用
林德罗矿床位于阿根廷西北部的普纳高原,地处中安第斯山脉中央火山带的南端。次火山侵入体的高钙碱性闪长岩成分、较浅的成矿深度(1.5 千米)以及富金贫铜的成矿方式都表明林德罗矿床是一个斑岩型金矿床。斑岩型金矿床在全球范围内都非常稀少,而控制其形成的因素至今仍鲜为人知。在此,我们对流体包裹体进行了详细研究,以确定林德罗金矿沉淀的成矿流体的特征。我们使用拉曼光谱、微测温和 LA-ICP-MS(激光烧蚀电感耦合等离子体质谱法)分析了石英脉(A 型和带状石英)中不同类型的流体包裹体,这些包裹体与 K 硅酸盐蚀变有关。在石英脉中可识别出四种包裹体类型:(i) 盐熔体包裹体,其特征是子矿物(主要是氯化铁、钠长石、海泡石、无水石膏和赤铁矿)密集堆积,气泡扭曲,缺乏液相;(ii) 含有海泡石的包裹体,包含液体、蒸汽和海泡石;(iii) 含有液体和蒸汽的两相水溶液包裹体;(iv) 只包含蒸汽的富蒸汽包裹体。包裹体类型与热液演化的不同阶段有关。第一阶段是主要的成矿阶段,其特点是富含蒸汽的包裹体与盐熔包裹体共存。盐熔包裹体通常显示总均化温度(ThL)为 1000 °C。这种富含 Na-K-Fe-Cl-的高盐度盐水(约 90 wt% 的 NaCl 当量)来源于岩浆,是金矿化的主要原因。后期的两个阶段涉及较冷的流体(ThL < 300 °C)和逐渐降低的盐度(从 36.1 到 0.2 wt% NaCl eq.),分别在第二和第三阶段被含卤石和两相水包裹体所捕获,对应于晚期岩浆-热液系统,可能与深层超临界流体外溶解有关。盐熔包裹体最有可能是林德罗 K 硅酸盐蚀变和相关金矿化的母液。这种不常见的流体类型肯定在浅层斑岩金矿床的金迁移和沉淀过程中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信