Modification of Microstructural and Fluid Migration of Bituminous Coal by Microwave–LN2 Freeze–Thaw Cycles: Implication for Efficient Recovery of Coalbed Methane
He Li, Xi Wu, Meng Liu, Baiquan Lin, Wei Yang, Yidu Hong, Jieyan Cao, Chang Guo
{"title":"Modification of Microstructural and Fluid Migration of Bituminous Coal by Microwave–LN2 Freeze–Thaw Cycles: Implication for Efficient Recovery of Coalbed Methane","authors":"He Li, Xi Wu, Meng Liu, Baiquan Lin, Wei Yang, Yidu Hong, Jieyan Cao, Chang Guo","doi":"10.1007/s11053-024-10348-y","DOIUrl":null,"url":null,"abstract":"<p>To improve the efficiency of coalbed methane and recoverability of reservoirs, enhanced fracturing technology is usually required to improve the low porosity and permeability status of coal reservoirs. As a feasible method for strengthening permeability, microwave–LN<sub>2</sub> freeze–thaw (MLFT) cycles modify the microscopic pore structure of coal through the coupled effect of temperature stress changes, phase change expansion, and fatigue damage. <sup>1</sup>H nuclear magnetic resonance combined with fractal dimension theory was used to characterize quantitatively the pore system and geometric features of coal. The geometric fractal model constructed using the <i>T</i><sub><i>2</i></sub> spectrum indicates that the fractal dimensions <i>D</i><sub><i>p</i></sub> and <i>D</i><sub><i>e</i></sub> have high fitting accuracy, demonstrating that percolation and effective pores exhibit good fractal characteristics. <i>D</i><sub><i>p</i></sub> and <i>D</i><sub><i>e</i></sub> are correlated negatively and positively, respectively, with the cyclic parameters. The relevance analysis shows that the NMR fractal method can reflect the pore–fracture heterogeneity of coal, which has a significant effect on the percentage of fluid migration space. This study reveals that MLFT cycles have significant enhancement effects on promoting the extension of multi-type pores structures within the coal matrix, as well as the connectivity and permeability of cracks.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10348-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the efficiency of coalbed methane and recoverability of reservoirs, enhanced fracturing technology is usually required to improve the low porosity and permeability status of coal reservoirs. As a feasible method for strengthening permeability, microwave–LN2 freeze–thaw (MLFT) cycles modify the microscopic pore structure of coal through the coupled effect of temperature stress changes, phase change expansion, and fatigue damage. 1H nuclear magnetic resonance combined with fractal dimension theory was used to characterize quantitatively the pore system and geometric features of coal. The geometric fractal model constructed using the T2 spectrum indicates that the fractal dimensions Dp and De have high fitting accuracy, demonstrating that percolation and effective pores exhibit good fractal characteristics. Dp and De are correlated negatively and positively, respectively, with the cyclic parameters. The relevance analysis shows that the NMR fractal method can reflect the pore–fracture heterogeneity of coal, which has a significant effect on the percentage of fluid migration space. This study reveals that MLFT cycles have significant enhancement effects on promoting the extension of multi-type pores structures within the coal matrix, as well as the connectivity and permeability of cracks.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.