{"title":"Small modular nuclear reactors: A pathway to cost savings and environmental progress in SAGD operations","authors":"Samaneh Ashoori, Ian D. Gates","doi":"10.1016/j.nxener.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><p>Small Modular Nuclear Reactors (SMRs) offer a promising option for environmentally friendly bitumen recovery operations. The extraction of oil sands in Western Canada is vital for the economy, but traditional methods like Steam-Assisted Gravity Drainage (SAGD) contribute significantly to greenhouse gas (GHG) emissions. In SAGD, steam generation, primarily fueled by natural gas combustion, is the main source of emissions. Given the imperative to reduce carbon intensity, less emissive recovery methods are needed to sustain production and economic viability in Canadian oil sands. Currently, there are limited non-carbon alternatives for steam generation in oil sands applications. The utilization of SMRs for steam generation presents a clean alternative. In this study, we examine the feasibility of employing SMRs in in-situ oil sands recovery operations. Through standardized economic metrics and sensitivity analysis, we demonstrate that integrating SMRs into SAGD operations eliminates GHG emissions significantly and can potentially outperform conventional natural gas-based steam generation in terms of net present value, under certain operational scenarios. Hence, our findings indicate that SMRs hold promise for decarbonizing oil sands recovery processes.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000334/pdfft?md5=d0a4e4990a873f9a22ccc77d8796b32b&pid=1-s2.0-S2949821X24000334-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Small Modular Nuclear Reactors (SMRs) offer a promising option for environmentally friendly bitumen recovery operations. The extraction of oil sands in Western Canada is vital for the economy, but traditional methods like Steam-Assisted Gravity Drainage (SAGD) contribute significantly to greenhouse gas (GHG) emissions. In SAGD, steam generation, primarily fueled by natural gas combustion, is the main source of emissions. Given the imperative to reduce carbon intensity, less emissive recovery methods are needed to sustain production and economic viability in Canadian oil sands. Currently, there are limited non-carbon alternatives for steam generation in oil sands applications. The utilization of SMRs for steam generation presents a clean alternative. In this study, we examine the feasibility of employing SMRs in in-situ oil sands recovery operations. Through standardized economic metrics and sensitivity analysis, we demonstrate that integrating SMRs into SAGD operations eliminates GHG emissions significantly and can potentially outperform conventional natural gas-based steam generation in terms of net present value, under certain operational scenarios. Hence, our findings indicate that SMRs hold promise for decarbonizing oil sands recovery processes.