Arc-disjoint out- and in-branchings in compositions of digraphs

IF 1 3区 数学 Q1 MATHEMATICS
J. Bang-Jensen , Y. Wang
{"title":"Arc-disjoint out- and in-branchings in compositions of digraphs","authors":"J. Bang-Jensen ,&nbsp;Y. Wang","doi":"10.1016/j.ejc.2024.103981","DOIUrl":null,"url":null,"abstract":"<div><p>An out-branching <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> (in-branching <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>) in a digraph <span><math><mi>D</mi></math></span> is a connected spanning subdigraph of <span><math><mi>D</mi></math></span> in which every vertex except the vertex <span><math><mi>u</mi></math></span>, called the root, has in-degree (out-degree) one. A <strong>good</strong><span><math><mi>(u,v)</mi></math></span>-<strong>pair</strong> in <span><math><mi>D</mi></math></span> is a pair of branchings <span><math><mrow><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></math></span> which have no arc in common. Thomassen proved that it is NP-complete to decide if a digraph has any good pair. A digraph is <strong>semicomplete</strong> if it has no pair of non-adjacent vertices. A <strong>semicomplete composition</strong> is any digraph <span><math><mi>D</mi></math></span> which is obtained from a semicomplete digraph <span><math><mi>S</mi></math></span> by substituting an arbitrary digraph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> for each vertex <span><math><mi>x</mi></math></span> of <span><math><mi>S</mi></math></span>.</p><p>Recently the authors of this paper gave a complete classification of semicomplete digraphs which have a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair, where <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> are prescribed vertices. They also gave a polynomial algorithm which for a given semicomplete digraph <span><math><mi>D</mi></math></span> and vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>D</mi></math></span>, either produces a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair in <span><math><mi>D</mi></math></span> or a certificate that <span><math><mi>D</mi></math></span> has no such pair. In this paper we show how to use the result for semicomplete digraphs to completely solve the problem of characterizing semicomplete compositions which have a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair for given vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span>. Our solution implies that the problem of deciding the existence of a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair and finding such a pair when it exists is polynomially solvable for all semicomplete compositions. We also completely solve the problem of deciding the existence of a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair and finding one when it exists for digraphs that are compositions of transitive digraphs. Combining these two results we obtain a polynomial algorithm for deciding whether a given quasi-transitive digraph <span><math><mi>D</mi></math></span> has a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair for given vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>D</mi></math></span>. This proves a conjecture of Bang-Jensen and Gutin from 1998.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000660/pdfft?md5=9f52566484a640f1db27537236930da5&pid=1-s2.0-S0195669824000660-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000660","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An out-branching Bu+ (in-branching Bu) in a digraph D is a connected spanning subdigraph of D in which every vertex except the vertex u, called the root, has in-degree (out-degree) one. A good(u,v)-pair in D is a pair of branchings Bu+,Bv which have no arc in common. Thomassen proved that it is NP-complete to decide if a digraph has any good pair. A digraph is semicomplete if it has no pair of non-adjacent vertices. A semicomplete composition is any digraph D which is obtained from a semicomplete digraph S by substituting an arbitrary digraph Hx for each vertex x of S.

Recently the authors of this paper gave a complete classification of semicomplete digraphs which have a good (u,v)-pair, where u,v are prescribed vertices. They also gave a polynomial algorithm which for a given semicomplete digraph D and vertices u,v of D, either produces a good (u,v)-pair in D or a certificate that D has no such pair. In this paper we show how to use the result for semicomplete digraphs to completely solve the problem of characterizing semicomplete compositions which have a good (u,v)-pair for given vertices u,v. Our solution implies that the problem of deciding the existence of a good (u,v)-pair and finding such a pair when it exists is polynomially solvable for all semicomplete compositions. We also completely solve the problem of deciding the existence of a good (u,v)-pair and finding one when it exists for digraphs that are compositions of transitive digraphs. Combining these two results we obtain a polynomial algorithm for deciding whether a given quasi-transitive digraph D has a good (u,v)-pair for given vertices u,v of D. This proves a conjecture of Bang-Jensen and Gutin from 1998.

数图组合中的弧二连接外支和内支
数图 D 中的外分支 Bu+ (内分支 Bu-)是 D 的一个连通的跨子数图,其中除了顶点 u(称为根)之外,每个顶点的内(外)度都是 1。D 中的 good(u,v)-pair 是一对没有共同弧的分支 Bu+,Bv-。托马森(Thomassen)证明,判断一个数图是否有任何好的一对是 NP-完全的。如果一个数图没有一对不相邻的顶点,那么它就是半完整的。最近,本文作者给出了半完整数图的完整分类,这些数图都有一对好的 (u,v)-pair,其中 u,v 是规定的顶点。他们还给出了一种多项式算法,对于给定的半完备图 D 和 D 中的顶点 u,v 来说,这种算法要么能在 D 中生成一对良好的 (u,v)-pair ,要么能证明 D 中没有这样的一对。在本文中,我们展示了如何利用半完全数图的结果来彻底解决半完全合成图的特征问题,即在给定顶点 u,v 的情况下,半完全合成图具有良好的 (u,v) 对。我们的解决方案意味着,对于所有半完全组合图,决定是否存在好 (u,v)-pair 以及在存在好 (u,v)-pair 时找到好 (u,v)-pair 的问题都是多项式可解的。我们还完全解决了决定一个好的(u,v)配对是否存在以及当它存在时找到它的问题。结合这两个结果,我们得到了一种多项式算法,用于判断给定的准传递数图 D 对于给定的 D 的顶点 u,v 是否具有良好的 (u,v)-pair 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信