The inducibility of oriented stars

IF 1.2 1区 数学 Q1 MATHEMATICS
Ping Hu , Jie Ma , Sergey Norin , Hehui Wu
{"title":"The inducibility of oriented stars","authors":"Ping Hu ,&nbsp;Jie Ma ,&nbsp;Sergey Norin ,&nbsp;Hehui Wu","doi":"10.1016/j.jctb.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of maximizing the number of induced copies of an oriented star <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> in digraphs of given size, where the center of the star has out-degree <em>k</em> and in-degree <em>ℓ</em>. The case <span><math><mi>k</mi><mi>ℓ</mi><mo>=</mo><mn>0</mn></math></span> was solved by Huang in <span>[11]</span>. Here, we asymptotically solve it for all other oriented stars with at least seven vertices.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"168 ","pages":"Pages 11-46"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000285","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of maximizing the number of induced copies of an oriented star Sk, in digraphs of given size, where the center of the star has out-degree k and in-degree . The case k=0 was solved by Huang in [11]. Here, we asymptotically solve it for all other oriented stars with at least seven vertices.

定向星的可诱导性
我们考虑的问题是在给定大小的数图中最大化定向星 Sk,ℓ 的诱导副本数,其中星的中心有外度 k 和内度 ℓ。Huang 在 [11] 中解决了 kℓ=0 的情况。在此,我们对至少有七个顶点的所有其他定向星进行渐近求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信