Elke Warmerdam , Dominik Horn , Ramona Filip , Kolja Freier , Bergita Ganse , Carolina Classen
{"title":"Gait asymmetries after fibular free flap harvest: A cross-sectional observational study","authors":"Elke Warmerdam , Dominik Horn , Ramona Filip , Kolja Freier , Bergita Ganse , Carolina Classen","doi":"10.1016/j.clinbiomech.2024.106259","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The ability to walk safely after head and neck reconstruction with fibular free flaps in tumor surgery is a high priority for patients. In addition, surgeons and patients require objective knowledge of the functional donor-site morbidity. However, the effects of fibular free flap surgery on gait asymmetries have only been studied for step length and stance duration. This study analyses whether patients who have undergone fibular free flap reconstruction have enduring gait asymmetries compared to age-matched controls.</p></div><div><h3>Methods</h3><p>Patients who underwent head and neck reconstruction with fibular free flaps between 2019 and 2023 were recruited, as well as age-matched controls. Participants walked on an instrumented treadmill at 3 km/h. The primary outcome measures were 22 gait asymmetry metrics. Secondary outcome measures were the associations of gait asymmetry with the length of the harvested fibula, and with the time after surgery.</p></div><div><h3>Findings</h3><p>Nine out of 13 recruited patients completed the full assessment without holding on to the handrail on the treadmill. In addition, nine age-matched controls were enrolled. Twenty out of the 22 gait asymmetry parameters of patients were similar to healthy controls, while push-off peak force (<em>p</em> = 0.008) and medial impulse differed (<em>p</em> = 0.003). Gait asymmetry did not correlate with the length of the fibula harvested. Seven gait asymmetry parameters had a strong correlation with the time after surgery.</p></div><div><h3>Interpretation</h3><p>On the long-term, fibular free flap reconstruction has only a limited effect on the asymmetry of force-related and temporal gait parameters while walking on a treadmill.</p></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"115 ","pages":"Article 106259"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268003324000913/pdfft?md5=8dbf618e65be462530d5046df27ee7b2&pid=1-s2.0-S0268003324000913-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324000913","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The ability to walk safely after head and neck reconstruction with fibular free flaps in tumor surgery is a high priority for patients. In addition, surgeons and patients require objective knowledge of the functional donor-site morbidity. However, the effects of fibular free flap surgery on gait asymmetries have only been studied for step length and stance duration. This study analyses whether patients who have undergone fibular free flap reconstruction have enduring gait asymmetries compared to age-matched controls.
Methods
Patients who underwent head and neck reconstruction with fibular free flaps between 2019 and 2023 were recruited, as well as age-matched controls. Participants walked on an instrumented treadmill at 3 km/h. The primary outcome measures were 22 gait asymmetry metrics. Secondary outcome measures were the associations of gait asymmetry with the length of the harvested fibula, and with the time after surgery.
Findings
Nine out of 13 recruited patients completed the full assessment without holding on to the handrail on the treadmill. In addition, nine age-matched controls were enrolled. Twenty out of the 22 gait asymmetry parameters of patients were similar to healthy controls, while push-off peak force (p = 0.008) and medial impulse differed (p = 0.003). Gait asymmetry did not correlate with the length of the fibula harvested. Seven gait asymmetry parameters had a strong correlation with the time after surgery.
Interpretation
On the long-term, fibular free flap reconstruction has only a limited effect on the asymmetry of force-related and temporal gait parameters while walking on a treadmill.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.