{"title":"The lung-brain axis in multiple sclerosis: Mechanistic insights and future directions","authors":"Lara Kular","doi":"10.1016/j.bbih.2024.100787","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with progressive lifelong disability. Current treatments are particularly effective at the early inflammatory stage of the disease but associate with safety concerns such as increased risk of infection. While clinical and epidemiological evidence strongly support the role of a bidirectional communication between the lung and the brain in MS in influencing disease risk and severity, the exact processes underlying such relationship appear complex and not fully understood. This short review aims to summarize key findings and future perspectives that might provide new insights into the mechanisms underpinning the lung-brain axis in MS.</p></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666354624000656/pdfft?md5=b2017dc49b0e63d75f20a08020cf8613&pid=1-s2.0-S2666354624000656-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, behavior, & immunity - health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666354624000656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with progressive lifelong disability. Current treatments are particularly effective at the early inflammatory stage of the disease but associate with safety concerns such as increased risk of infection. While clinical and epidemiological evidence strongly support the role of a bidirectional communication between the lung and the brain in MS in influencing disease risk and severity, the exact processes underlying such relationship appear complex and not fully understood. This short review aims to summarize key findings and future perspectives that might provide new insights into the mechanisms underpinning the lung-brain axis in MS.