Flag-Transitive 2- Designs Admitting a Two-Dimensional Projective Group

IF 1.3 4区 数学 Q1 MATHEMATICS
Suyun Ding, Yajie Wang, Xiaoqin Zhan
{"title":"Flag-Transitive 2- Designs Admitting a Two-Dimensional Projective Group","authors":"Suyun Ding, Yajie Wang, Xiaoqin Zhan","doi":"10.1155/2024/5521696","DOIUrl":null,"url":null,"abstract":"The focus of this study is to classify flag-transitive 2-designs. We have come to the conclusion that if <svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 11.6478 9.25986\" width=\"11.6478pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is a nontrivial 2-design having block size 5 and <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is a two-dimensional projective special linear group which acts flag-transitively on <svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 11.6478 9.25986\" width=\"11.6478pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-5\"></use></g></svg> with <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 19.867 11.7782\" width=\"19.867pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.867,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.194,0)\"></path></g></svg><span></span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"25.5861838 -8.34882 6.415 11.7782\" width=\"6.415pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.636,0)\"></path></g></svg></span> (mod 4), then <svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 11.6478 9.25986\" width=\"11.6478pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-5\"></use></g></svg> is a 2-(11, 5, 2) design, a 2-(11, 5, 12) design, a 2-<span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 21.418 12.7178\" width=\"21.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.787,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"24.2731838 -9.28833 9.204 12.7178\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,24.323,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,30.563,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"35.6561838 -9.28833 9.205 12.7178\" width=\"9.205pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.706,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,41.947,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"47.0401838 -9.28833 46.186 12.7178\" width=\"46.186pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.09,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.33,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,57.828,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,67.116,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,77.653,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,83.893,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,88.391,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> design with <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 17.646 11.7782\" width=\"17.646pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.015,0)\"><use xlink:href=\"#g117-35\"></use></g></svg><span></span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"21.2281838 -8.34882 6.415 11.7782\" width=\"6.415pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.278,0)\"></path></g></svg></span> (mod 4) or a 2-<span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 21.418 12.7178\" width=\"21.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.787,0)\"><use xlink:href=\"#g117-36\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"24.2731838 -9.28833 9.204 12.7178\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,24.323,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,30.563,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"35.6561838 -9.28833 9.205 12.7178\" width=\"9.205pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.706,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,41.947,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"47.0401838 -9.28833 40.417 12.7178\" width=\"40.417pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.09,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.588,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,60.876,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,71.413,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.653,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,82.151,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"87.4621838 -9.28833 11.14 12.7178\" width=\"11.14pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,87.512,0)\"><use xlink:href=\"#g113-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,93.752,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> design with <span><svg height=\"15.6876pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 17.646 15.6876\" width=\"17.646pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.015,0)\"></path></g></svg><span></span><svg height=\"15.6876pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"21.2281838 -12.2582 12.796 15.6876\" width=\"12.796pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.278,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,27.518,-5.741)\"></path></g></svg></span> (where <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 19.615 12.7178\" width=\"19.615pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.984,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"23.1971838 -9.28833 6.417 12.7178\" width=\"6.417pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.247,0)\"><use xlink:href=\"#g113-51\"></use></g></svg></span> is an even).","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5521696","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this study is to classify flag-transitive 2-designs. We have come to the conclusion that if is a nontrivial 2-design having block size 5 and is a two-dimensional projective special linear group which acts flag-transitively on with (mod 4), then is a 2-(11, 5, 2) design, a 2-(11, 5, 12) design, a 2- design with (mod 4) or a 2- design with (where is an even).
可容纳二维投影群的旗反式 2- 设计
本研究的重点是对旗反 2 设计进行分类。我们得出的结论是:如果是一个具有 5 块大小的非小二设计,并且是一个二维投影特殊线性群,且该群旗反式地作用于与(模 4),那么与就是一个 2-(11,5,2)设计、一个 2-(11,5,12)设计、一个与(模 4)的 2-设计或一个与(其中与是偶数)的 2-设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信