求助PDF
{"title":"Computing the -Clique Metric Dimension of Graphs via (Edge) Corona Products and Integer Linear Programming Model","authors":"Zeinab Shahmiri, Mostafa Tavakoli","doi":"10.1155/2024/3241718","DOIUrl":null,"url":null,"abstract":"Let <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> be a graph with <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.6501 6.1673\" width=\"6.6501pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> vertices and <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.71 12.5794\" width=\"26.71pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.079,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"30.2921838 -9.28833 20.53 12.5794\" width=\"20.53pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.342,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,34.853,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.908,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"54.454183799999996 -9.28833 10.208 12.5794\" width=\"10.208pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,54.504,0)\"><use xlink:href=\"#g113-89\"></use></g></svg></span> is an <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 3.60972 9.49473\" width=\"3.60972pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-109\"></use></g></svg>-</span>clique of <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.5529 11.5564\" width=\"13.5529pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.892,0)\"></path></g></svg>.</span> A vertex <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.359 11.5564\" width=\"16.359pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.495,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"19.9411838 -9.28833 27.354 11.5564\" width=\"27.354pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.991,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.215,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.713,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.605,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> is said to resolve a pair of cliques <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.898 11.5564\" width=\"16.898pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.934,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"19.027183800000003 -9.28833 13.201 11.5564\" width=\"13.201pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.077,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.558,0)\"><use xlink:href=\"#g113-126\"></use></g></svg></span> in <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> if <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 27.303 12.5794\" width=\"27.303pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.15,3.132)\"><use xlink:href=\"#g50-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.978,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,18.476,0)\"><use xlink:href=\"#g185-40\"></use></g><g transform=\"matrix(.013,0,0,-0.013,24.339,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"29.4321838 -9.28833 25.748 12.5794\" width=\"25.748pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,29.482,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.428,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,55.23,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,47.558,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"58.799183799999994 -9.28833 27.303 12.5794\" width=\"27.303pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,58.849,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,65.999,3.132)\"><use xlink:href=\"#g50-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,72.827,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.325,0)\"><use xlink:href=\"#g185-40\"></use></g><g transform=\"matrix(.013,0,0,-0.013,83.188,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"88.28118380000001 -9.28833 13.33 12.5794\" width=\"13.33pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,88.331,0)\"><use xlink:href=\"#g113-90\"></use></g><g transform=\"matrix(.013,0,0,-0.013,96.812,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> where <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.1045 12.5794\" width=\"14.1045pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.15,3.132)\"><use xlink:href=\"#g50-72\"></use></g></svg> is the distance function of <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>.</span> For a pair of cliques <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.898 11.5564\" width=\"16.898pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.934,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"19.027183800000003 -9.28833 13.201 11.5564\" width=\"13.201pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.077,0)\"><use xlink:href=\"#g113-90\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.558,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>,</span></span> the resolving neighbourhood of <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> and <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-90\"></use></g></svg>,</span> denoted by <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 31.812 12.5794\" width=\"31.812pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.914,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.425,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.848,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"33.942183799999995 -9.28833 13.23 12.5794\" width=\"13.23pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,33.992,0)\"><use xlink:href=\"#g113-90\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.473,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>,</span></span> is the collection of all vertices which resolve the pair <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.898 11.5564\" width=\"16.898pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.934,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"19.027183800000003 -9.28833 13.201 11.5564\" width=\"13.201pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.077,0)\"><use xlink:href=\"#g113-90\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.558,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>.</span></span> A subset <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 6.25863 8.8423\" width=\"6.25863pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> of <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 27.3063 11.5564\" width=\"27.3063pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.224,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.722,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,22.614,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> is called an <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.96 11.5564\" width=\"10.96pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.996,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"13.089183799999999 -9.28833 11.218 11.5564\" width=\"11.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.139,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.679,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>clique metric generator for <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> if <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 35.231 12.5794\" width=\"35.231pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,3.419,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.505,3.132)\"><use xlink:href=\"#g50-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,18.333,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,22.844,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.267,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"37.360183799999994 -9.28833 23.529 12.5794\" width=\"23.529pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.41,0)\"><use xlink:href=\"#g113-90\"></use></g><g transform=\"matrix(.013,0,0,-0.013,45.892,0)\"><use xlink:href=\"#g113-126\"></use></g><g transform=\"matrix(.013,0,0,-0.013,53.308,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"63.7951838 -9.28833 20.818 12.5794\" width=\"20.818pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,63.845,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,69.981,0)\"><use xlink:href=\"#g113-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.032,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"88.2441838 -9.28833 6.908 12.5794\" width=\"6.908pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,88.294,0)\"><use xlink:href=\"#g113-108\"></use></g></svg></span> for each pair of distinct <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 3.60972 9.49473\" width=\"3.60972pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-109\"></use></g></svg>-</span>cliques <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> and <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-90\"></use></g></svg> of <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>.</span> The <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.96 11.5564\" width=\"10.96pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.996,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"13.089183799999999 -9.28833 11.218 11.5564\" width=\"11.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.139,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.679,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>clique metric dimension of <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>,</span> denoted by <span><svg height=\"12.599pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.3079 66.7761 12.599\" width=\"66.7761pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.404,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.94,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,22.439,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.303,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.787,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,43.534,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.681,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,53.179,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,62.071,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span> is defined as <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 45.403 11.5564\" width=\"45.403pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.647,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.131,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.322,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.833,0)\"><use xlink:href=\"#g113-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.252,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.388,0)\"><use xlink:href=\"#g113-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.439,0)\"><use xlink:href=\"#g113-59\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"48.985183799999994 -9.28833 6.335 11.5564\" width=\"6.335pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,49.035,0)\"><use xlink:href=\"#g113-84\"></use></g></svg></span> is an <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.96 11.5564\" width=\"10.96pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.996,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"13.089183799999999 -9.28833 11.218 11.5564\" width=\"11.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.139,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.679,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>clique metric generator of <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.5529 11.5564\" width=\"13.5529pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.892,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>.</span> In this paper, the <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.96 11.5564\" width=\"10.96pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.996,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"13.089183799999999 -9.28833 11.218 11.5564\" width=\"11.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.139,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.679,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>clique metric dimension of corona and edge corona of two graphs are computed. In addition, an integer linear programming model is presented for the <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.96 11.5564\" width=\"10.96pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.996,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"13.089183799999999 -9.28833 11.218 11.5564\" width=\"11.218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.139,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.679,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>clique metric basis for a given graph <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg> and its <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 3.60972 9.49473\" width=\"3.60972pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-109\"></use></g></svg>-</span>cliques.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"4 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3241718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用