{"title":"Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors","authors":"Jacqueline Ji, Elise Lefebvre, Jocelyn Laporte","doi":"10.1186/s13395-024-00341-7","DOIUrl":null,"url":null,"abstract":"Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"50 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-024-00341-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.