Pierluigi Glielmo, Stefano Fusco, Salvatore Gitto, Giulia Zantonelli, Domenico Albano, Carmelo Messina, Luca Maria Sconfienza, Giovanni Mauri
{"title":"Artificial intelligence in interventional radiology: state of the art","authors":"Pierluigi Glielmo, Stefano Fusco, Salvatore Gitto, Giulia Zantonelli, Domenico Albano, Carmelo Messina, Luca Maria Sconfienza, Giovanni Mauri","doi":"10.1186/s41747-024-00452-2","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.</p><p><b>Relevance statement</b> Exploring AI’s transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.</p><p><b>Key points</b></p><p>• AI adoption in IR is more complex compared to diagnostic radiology.</p><p>• Current literature about AI in IR is in its early stages.</p><p>• AI has the potential to revolutionise every aspect of IR.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00452-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.
Relevance statement Exploring AI’s transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.
Key points
• AI adoption in IR is more complex compared to diagnostic radiology.
• Current literature about AI in IR is in its early stages.
• AI has the potential to revolutionise every aspect of IR.
人工智能(AI)在介入放射学(IR)的各种应用中展现出巨大潜力。对决策和结果预测的支持,透视、超声、计算机断层扫描和磁共振成像的新功能和改进,特别是在 IR 领域,都进行了研究。此外,人工智能对融合成像和模拟现实、机器人技术、无触摸软件交互和虚拟活检都有重大推动作用。人工智能的程序性、异质性和缺乏标准化等问题延缓了人工智能在红外成像领域的应用进程。人工智能研究尚处于早期阶段,因为目前的文献都是基于试点或概念验证研究。相关性声明 本文探讨了人工智能的变革潜力,评估了其在红外成像领域的当前应用和挑战,对决策支持和结果预测、成像增强、机器人技术和非接触式交互等方面提出了见解,塑造了患者护理的未来。