Ju-Won Kim, Julan Kim, Ja Young Cho, Younhee Shin, Hyojung Son, Subramaniyam Sathiyamoorthy, Bo-Seong Kim, Young-Ok Kim, Byeong-chul Kang, Hee Jeong Kong
{"title":"Association Between Muscle Growth and Transcription of a Mutant MSTN Gene in Olive Flounder (Paralichthys olivaceus)","authors":"Ju-Won Kim, Julan Kim, Ja Young Cho, Younhee Shin, Hyojung Son, Subramaniyam Sathiyamoorthy, Bo-Seong Kim, Young-Ok Kim, Byeong-chul Kang, Hee Jeong Kong","doi":"10.1007/s10126-024-10322-y","DOIUrl":null,"url":null,"abstract":"<div><p>Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor β (TGF-β) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have more diverse roles in this group than in mammals. In this study, we assessed the genome-wide transcriptional expression pattern associated with the CRISPR/Cas9-mutated MSTN gene in the olive flounder (<i>Paralichthys olivaceus</i>) in association with changes in cell proliferation and transportation processes. There were no differences in the hepatosomatic index, and the growth of male and female fish increased in the F1 progeny of the MSTN mutants. Furthermore, the histopathological analysis showed that myostatin editing resulted in a 41.24% increase in back muscle growth and 46.92% increase in belly muscle growth in male flounder compared with normal flounder, and a 16.01% increase in back muscle growth and 14.26% increase in belly muscle growth in female flounder compared with normal flounder. This study demonstrates that editing of the myostatin gene enhances muscle growth in olive flounder, with a notably more pronounced effect observed in males. Consequently, myostatin-edited male flounder could represent a valuable asset for the flounder aquaculture industry.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 3","pages":"599 - 608"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10322-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor β (TGF-β) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have more diverse roles in this group than in mammals. In this study, we assessed the genome-wide transcriptional expression pattern associated with the CRISPR/Cas9-mutated MSTN gene in the olive flounder (Paralichthys olivaceus) in association with changes in cell proliferation and transportation processes. There were no differences in the hepatosomatic index, and the growth of male and female fish increased in the F1 progeny of the MSTN mutants. Furthermore, the histopathological analysis showed that myostatin editing resulted in a 41.24% increase in back muscle growth and 46.92% increase in belly muscle growth in male flounder compared with normal flounder, and a 16.01% increase in back muscle growth and 14.26% increase in belly muscle growth in female flounder compared with normal flounder. This study demonstrates that editing of the myostatin gene enhances muscle growth in olive flounder, with a notably more pronounced effect observed in males. Consequently, myostatin-edited male flounder could represent a valuable asset for the flounder aquaculture industry.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.