Stationary coupled KdV systems and their Stäckel representations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Błażej M. Szablikowski, Maciej Błaszak, Krzysztof Marciniak
{"title":"Stationary coupled KdV systems and their Stäckel representations","authors":"Błażej M. Szablikowski,&nbsp;Maciej Błaszak,&nbsp;Krzysztof Marciniak","doi":"10.1111/sapm.12698","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate stationary coupled Korteweg–de Vries (cKdV) systems and prove that every <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-field stationary cKdV system can be written, after a careful reparameterization of jet variables, as a classical separable Stäckel system in <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N+1$</annotation>\n </semantics></math> different ways. For each of these <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N+1$</annotation>\n </semantics></math> parameterizations, we present an explicit map between the jet variables and the separation variables of the system. Finally, we show that each pair of Stäckel representations of the same stationary cKdV system, when considered in the phase space extended by Casimir variables, is connected by an appropriate finite-dimensional Miura map, which leads to an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(N+1)$</annotation>\n </semantics></math>-Hamiltonian formulation for the stationary cKdV system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate stationary coupled Korteweg–de Vries (cKdV) systems and prove that every N $N$ -field stationary cKdV system can be written, after a careful reparameterization of jet variables, as a classical separable Stäckel system in N + 1 $N+1$ different ways. For each of these N + 1 $N+1$ parameterizations, we present an explicit map between the jet variables and the separation variables of the system. Finally, we show that each pair of Stäckel representations of the same stationary cKdV system, when considered in the phase space extended by Casimir variables, is connected by an appropriate finite-dimensional Miura map, which leads to an ( N + 1 ) $(N+1)$ -Hamiltonian formulation for the stationary cKdV system.

静态耦合 KdV 系统及其 Stäckel 表示法
在这篇文章中,我们研究了静止耦合 Korteweg-de Vries(cKdV)系统,并证明在对射流变量进行仔细的重新参数化之后,每个-场静止 cKdV 系统都可以以不同的方式写成经典的可分离 Stäckel 系统。对于每一种参数化,我们都提出了系统的射流变量和分离变量之间的明确映射。最后,我们证明了在卡西米尔变量扩展的相空间中考虑同一静止 cKdV 系统的每一对 Stäckel 表示时,它们都通过适当的有限维 Miura 映射连接起来,这导致了静止 cKdV 系统的-哈密顿公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信