Jilin Fan, Kuan Zhang, Mingjun Xuan, Xiang Gao, Rostislav Vinokur, Robert Göstl, Lifei Zheng, Andreas Herrmann
{"title":"High-Intensity Focused Ultrasound-Induced Disulfide Mechanophore Activation in Polymeric Nanostructures for Molecule Release","authors":"Jilin Fan, Kuan Zhang, Mingjun Xuan, Xiang Gao, Rostislav Vinokur, Robert Göstl, Lifei Zheng, Andreas Herrmann","doi":"10.31635/ccschem.024.202403876","DOIUrl":null,"url":null,"abstract":"<p>Ultrasound (US) activation of mechanophores in polymers that initiates cascade chemical reactions is a promising strategy for on-demand molecule release. However, the typical US frequency used for mechanochemistry is around 20 kHz, producing inertial cavitation that exceeds the tolerance threshold of biological systems. Here, high-intensity focused US (HIFU) as a mechanical stimulus is introduced to drive the activation of disulfide mechanophores in hyperbranched star polymers (HBSPs) and microgels (MGLs). The mechanism of molecular release is attributed to the thiol-disulfide exchange reaction and subsequent intramolecular cyclization. We reveal that HBSPs and MGLs effectively transduce HIFU as mechanical input to chemical output, demonstrated by the quantification of the release of fluorescent umbelliferone (UMB). Moreover, an in vitro study of drug release is carried out using camptothecin as the model drug, which is covalently loaded in MGLs, demonstrating the potential of our system for controlled drug delivery to cancer cells.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"14 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202403876","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound (US) activation of mechanophores in polymers that initiates cascade chemical reactions is a promising strategy for on-demand molecule release. However, the typical US frequency used for mechanochemistry is around 20 kHz, producing inertial cavitation that exceeds the tolerance threshold of biological systems. Here, high-intensity focused US (HIFU) as a mechanical stimulus is introduced to drive the activation of disulfide mechanophores in hyperbranched star polymers (HBSPs) and microgels (MGLs). The mechanism of molecular release is attributed to the thiol-disulfide exchange reaction and subsequent intramolecular cyclization. We reveal that HBSPs and MGLs effectively transduce HIFU as mechanical input to chemical output, demonstrated by the quantification of the release of fluorescent umbelliferone (UMB). Moreover, an in vitro study of drug release is carried out using camptothecin as the model drug, which is covalently loaded in MGLs, demonstrating the potential of our system for controlled drug delivery to cancer cells.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.