Plasma-Engraved Lattice-Matched NiO/NiFe2O4 Heterostructure with Ample Oxygen Vacancies for Efficient Water Electrolysis and Zn-Air Batteries

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kai Zeng, Hongwei Tao, Yijia Zhaoshi, Jiawen Feng, Shuhao Jiang, Yanfang Wu, Ruizhi Yang, Zhengyou He, Yibing Li
{"title":"Plasma-Engraved Lattice-Matched NiO/NiFe2O4 Heterostructure with Ample Oxygen Vacancies for Efficient Water Electrolysis and Zn-Air Batteries","authors":"Kai Zeng,&nbsp;Hongwei Tao,&nbsp;Yijia Zhaoshi,&nbsp;Jiawen Feng,&nbsp;Shuhao Jiang,&nbsp;Yanfang Wu,&nbsp;Ruizhi Yang,&nbsp;Zhengyou He,&nbsp;Yibing Li","doi":"10.1002/chem.202401272","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous interface and defect engineering offer effective pathways to accelerate oxygen evolution reaction (OER) charge transfer kinetics and motivate optimal intrinsic catalytic activity. Herein, we report the lattice-matched NiO/NiFe<sub>2</sub>O<sub>4</sub> heterostructure with ample oxygen vacancies (Vo-NiO/NiFe<sub>2</sub>O<sub>4</sub>) induced by a feasible hydrothermal followed by calcination and plasma-engraving assistant technique, which shows the unique porous microflower arrangement of intertwined nanosheets. Benefitting from the synergetic effects between lattice-matched heterointerface and oxygen vacancies induce the strong electronic coupling, optimized OH<sup>−</sup>/O<sub>2</sub> diffusion pathway and ample active sites, thus-prepared Vo-NiO/NiFe<sub>2</sub>O<sub>4</sub> presents a favorable OER performance with a low overpotential (261 mV @ 10 mA cm<sup>−2</sup>) and small Tafel slope (39.4 mV dec<sup>−1</sup>), even surpassing commercial RuO<sub>2</sub> catalyst. Additionally, the two-electrode configuration water electrolyzer and rechargeable zinc-air battery assembled by Vo-NiO/NiFe<sub>2</sub>O<sub>4</sub> catalyst show the potential practical application directions. This work provides an innovative avenue for strengthening OER performance toward water electrolysis and Zn-air batteries <i>via</i> the interface and vacancy engineering strategy.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"30 37","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202401272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chem.202401272","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous interface and defect engineering offer effective pathways to accelerate oxygen evolution reaction (OER) charge transfer kinetics and motivate optimal intrinsic catalytic activity. Herein, we report the lattice-matched NiO/NiFe2O4 heterostructure with ample oxygen vacancies (Vo-NiO/NiFe2O4) induced by a feasible hydrothermal followed by calcination and plasma-engraving assistant technique, which shows the unique porous microflower arrangement of intertwined nanosheets. Benefitting from the synergetic effects between lattice-matched heterointerface and oxygen vacancies induce the strong electronic coupling, optimized OH/O2 diffusion pathway and ample active sites, thus-prepared Vo-NiO/NiFe2O4 presents a favorable OER performance with a low overpotential (261 mV @ 10 mA cm−2) and small Tafel slope (39.4 mV dec−1), even surpassing commercial RuO2 catalyst. Additionally, the two-electrode configuration water electrolyzer and rechargeable zinc-air battery assembled by Vo-NiO/NiFe2O4 catalyst show the potential practical application directions. This work provides an innovative avenue for strengthening OER performance toward water electrolysis and Zn-air batteries via the interface and vacancy engineering strategy.

Abstract Image

等离子刻蚀晶格匹配的 NiO/NiFe2O4 异质结构具有充足的氧空位,可用于高效水电解和锌-空气电池
异质界面和缺陷工程为加速氧进化反应(OER)电荷转移动力学和激发最佳内在催化活性提供了有效途径。在此,我们报告了通过可行的水热煅烧和等离子刻蚀辅助技术诱导出的具有大量氧空位的晶格匹配 NiO/NiFe2O4 异质结构(Vo-NiO/NiFe2O4),该结构显示出交织纳米片独特的多孔微花排列。得益于晶格匹配的异质表面与氧空位之间的协同效应、强电子耦合、优化的 OH-/O2 扩散途径和充足的活性位点,制备的 Vo-NiFe2O4 具有良好的 OER 性能,过电位低(261 mV @ 10 mA cm-2),塔菲尔斜率小(39.4 mV dec-1),甚至超过了商用 RuO2 催化剂。此外,用 Vo-NiO/NiFe2O4 催化剂组装的双电极结构水电解槽和可充电锌-空气电池显示了潜在的实际应用方向。这项工作为通过界面和空位工程策略来加强水电解和锌-空气电池的 OER 性能提供了一条创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信