Xiaochen Sun, Xuan Gao, Chang Su, Wei Cheng, Nan Gao, Xin Zhang, Mengmeng Gong, Haobo Dong, Yuhang Dai, Guanjie He, Hongdong Li
{"title":"Nanodiamond-Assisted High Performance Lithium and Sodium Ions Co-Storage","authors":"Xiaochen Sun, Xuan Gao, Chang Su, Wei Cheng, Nan Gao, Xin Zhang, Mengmeng Gong, Haobo Dong, Yuhang Dai, Guanjie He, Hongdong Li","doi":"10.1002/eem2.12749","DOIUrl":null,"url":null,"abstract":"<p>While lithium resources are scarce for high energy-dense lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), serving as an alternative, inherently suffer from low capacity and the high-cost use of non-graphite anodes. Combining Li- and Na-ions within a single battery system is expected to mitigate the shortcomings of both systems while leveraging their respective advantages. In this study, we developed and assembled a nanodiamonds (NDs)-assisted co-Li/Na-ion battery (ND–LSIB). This innovative battery system comprised a commercial graphite anode, an ND-modified polypropylene (DPP) separator, a hybrid lithium/sodium-based electrolyte, and a cathode. It is theoretically and experimentally demonstrated that the ND/Li co-insertion can serve as an ion-drill opening graphite layers and reconstructing graphite anodes into few-layered graphene with expanding interlayer space, achieving highly efficient Li/Na storage and the theoretical maximum of LiC<sub>6</sub> for Li storage in graphite. In addition, ND is helpful for creating a LiF-/NaF-rich hybrid solid electrolyte interface with improved ionic mobility, mechanical strength, and reversibility. Consequently, ND–LSIBs have higher specific capacities ~1.4 times the theoretical value of LIBs and show long-term cycling stability. This study proposes and realizes the concept of Li/Na co-storage in one ion battery with compatible high-performance, cost-effectiveness, and industrial prospects.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While lithium resources are scarce for high energy-dense lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), serving as an alternative, inherently suffer from low capacity and the high-cost use of non-graphite anodes. Combining Li- and Na-ions within a single battery system is expected to mitigate the shortcomings of both systems while leveraging their respective advantages. In this study, we developed and assembled a nanodiamonds (NDs)-assisted co-Li/Na-ion battery (ND–LSIB). This innovative battery system comprised a commercial graphite anode, an ND-modified polypropylene (DPP) separator, a hybrid lithium/sodium-based electrolyte, and a cathode. It is theoretically and experimentally demonstrated that the ND/Li co-insertion can serve as an ion-drill opening graphite layers and reconstructing graphite anodes into few-layered graphene with expanding interlayer space, achieving highly efficient Li/Na storage and the theoretical maximum of LiC6 for Li storage in graphite. In addition, ND is helpful for creating a LiF-/NaF-rich hybrid solid electrolyte interface with improved ionic mobility, mechanical strength, and reversibility. Consequently, ND–LSIBs have higher specific capacities ~1.4 times the theoretical value of LIBs and show long-term cycling stability. This study proposes and realizes the concept of Li/Na co-storage in one ion battery with compatible high-performance, cost-effectiveness, and industrial prospects.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.