{"title":"Effects of subtle variation in forest canopy openness on cache pilferage and its implications for forest regeneration","authors":"Hongying WANG, Bo WANG, Wenwen CHEN","doi":"10.1111/1749-4877.12831","DOIUrl":null,"url":null,"abstract":"Scatter‐hoarding rodents play important roles in plant regeneration and species coexistence in many forest ecosystems. Cache pilferage, the behavior of rodents seeking or relocating seeds cached by other individuals, is ubiquitous during the scatter‐hoarding process. The effects of canopy openness on cache pilferage have received considerable attention, most of which have focused on the comparison between full canopy cover and completely open areas, such as forest gaps. However, little attention has been given to whether the subtle variation in forest canopy openness affects cache pilferage, although subtle variation in light environments exists in many forests, especially tropical and subtropical forests, where the overall canopy is large and the forest window is relatively small. Here, we directly tested these questions by simulating 400 artificial caches, each containing one seed from four selected tree species, in a subtropical forest in southwestern China. The overall canopy openness of the forest was relatively small (with a mean value of 11.1%), but subtle spatial variation still existed (ranging from 5.7% to 19.5%). Overall, caches with lower canopy openness were more likely to be pilfered and removed faster, although not all species showed the same pattern. Our study highlights that subtle variation in forest canopy openness, even in a closed primary forest, has significant effects on cache pilferage by rodents, which may influence the following seed germination and forest regeneration processes. Additionally, seedling species composition may further be altered because the canopy effects on cache pilferage are species‐specific.","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"148 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12831","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scatter‐hoarding rodents play important roles in plant regeneration and species coexistence in many forest ecosystems. Cache pilferage, the behavior of rodents seeking or relocating seeds cached by other individuals, is ubiquitous during the scatter‐hoarding process. The effects of canopy openness on cache pilferage have received considerable attention, most of which have focused on the comparison between full canopy cover and completely open areas, such as forest gaps. However, little attention has been given to whether the subtle variation in forest canopy openness affects cache pilferage, although subtle variation in light environments exists in many forests, especially tropical and subtropical forests, where the overall canopy is large and the forest window is relatively small. Here, we directly tested these questions by simulating 400 artificial caches, each containing one seed from four selected tree species, in a subtropical forest in southwestern China. The overall canopy openness of the forest was relatively small (with a mean value of 11.1%), but subtle spatial variation still existed (ranging from 5.7% to 19.5%). Overall, caches with lower canopy openness were more likely to be pilfered and removed faster, although not all species showed the same pattern. Our study highlights that subtle variation in forest canopy openness, even in a closed primary forest, has significant effects on cache pilferage by rodents, which may influence the following seed germination and forest regeneration processes. Additionally, seedling species composition may further be altered because the canopy effects on cache pilferage are species‐specific.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations