Youngjae Cho, Kihyuk Kim, Duhee Kim, Murali Bissannagari, Jungha Lee, Woongki Hong, Hyuk-Jun Kwon, Jae Eun Jang and Hongki Kang*,
{"title":"Stretchable Substrate Surface-Embedded Inkjet-Printed Strain Sensors for Design Customizable On-Skin Healthcare Electronics","authors":"Youngjae Cho, Kihyuk Kim, Duhee Kim, Murali Bissannagari, Jungha Lee, Woongki Hong, Hyuk-Jun Kwon, Jae Eun Jang and Hongki Kang*, ","doi":"10.1021/acsaelm.3c01682","DOIUrl":null,"url":null,"abstract":"<p >Stretchable strain sensors have been proposed for personalized healthcare monitoring or human motion detection in a skin-mountable form factor. For customization and stretchable substrate-compatible low-temperature processing, various printing technologies have been utilized to fabricate strain sensors. Hydrophobic stretchable polymers and low viscosity conductive inks are typically used in printed high resolution strain sensor fabrications. However, directly printed strain sensors on hydrophobic stretchable substrates have shown limited printability in pattern continuity, spatial resolution, stretchability, and linearity. Therefore, there is still a need to develop a simple printing process that can fabricate high-resolution stretchable strain sensors for skin-mountable healthcare electronics. In this work, we developed a simple inkjet printing and substrate transfer process for stretchable strain sensors by optimizing a polymer coating layer for enhancing the printed pattern formation, spatial resolution, and substrate transfer efficiency simultaneously while maintaining the benefits of inkjet printing, such as customizability and large-area applicability. The printed stretchable strain sensors are embedded into a stretchable substrate, improving stretchability up to 45% of strain, which successfully detects various parts of our body, such as wrists, fingers, and arms. Further, the printing process scales down the sensors to 150 μm × 6 mm, and the miniaturization enables distinguishing subtle movements of different fingers.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 5","pages":"3147–3157"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.3c01682","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable strain sensors have been proposed for personalized healthcare monitoring or human motion detection in a skin-mountable form factor. For customization and stretchable substrate-compatible low-temperature processing, various printing technologies have been utilized to fabricate strain sensors. Hydrophobic stretchable polymers and low viscosity conductive inks are typically used in printed high resolution strain sensor fabrications. However, directly printed strain sensors on hydrophobic stretchable substrates have shown limited printability in pattern continuity, spatial resolution, stretchability, and linearity. Therefore, there is still a need to develop a simple printing process that can fabricate high-resolution stretchable strain sensors for skin-mountable healthcare electronics. In this work, we developed a simple inkjet printing and substrate transfer process for stretchable strain sensors by optimizing a polymer coating layer for enhancing the printed pattern formation, spatial resolution, and substrate transfer efficiency simultaneously while maintaining the benefits of inkjet printing, such as customizability and large-area applicability. The printed stretchable strain sensors are embedded into a stretchable substrate, improving stretchability up to 45% of strain, which successfully detects various parts of our body, such as wrists, fingers, and arms. Further, the printing process scales down the sensors to 150 μm × 6 mm, and the miniaturization enables distinguishing subtle movements of different fingers.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico