Active sensing with predictive coding and uncertainty minimization

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdelrahman Sharafeldin, Nabil Imam, Hannah Choi
{"title":"Active sensing with predictive coding and uncertainty minimization","authors":"Abdelrahman Sharafeldin, Nabil Imam, Hannah Choi","doi":"10.1016/j.patter.2024.100983","DOIUrl":null,"url":null,"abstract":"<p>We present an end-to-end architecture for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment. Second, we apply our model to a more complex active vision task, whereby an agent actively samples its visual environment to gather information. We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes. We further show that using these representations for downstream classification leads to superior data efficiency and learning speed compared to other baselines while maintaining lower parameter complexity. Finally, the modular structure of our model facilitates interpretability, allowing us to probe its internal mechanisms and representations during exploration.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present an end-to-end architecture for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment. Second, we apply our model to a more complex active vision task, whereby an agent actively samples its visual environment to gather information. We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes. We further show that using these representations for downstream classification leads to superior data efficiency and learning speed compared to other baselines while maintaining lower parameter complexity. Finally, the modular structure of our model facilitates interpretability, allowing us to probe its internal mechanisms and representations during exploration.

Abstract Image

带有预测编码和不确定性最小化功能的主动传感
我们提出了一种端到端架构,用于体现式探索,其灵感来自两种生物计算:预测编码和不确定性最小化。该架构可以独立于任务和内在驱动的方式应用于任何探索环境。我们首先在迷宫导航任务中演示了我们的方法,并证明它能发现环境的潜在过渡分布和空间特征。其次,我们将模型应用于更复杂的主动视觉任务,即代理主动采样其视觉环境以收集信息。我们的研究表明,我们的模型通过探索建立了无监督表征,使其能够有效地对视觉场景进行分类。我们进一步证明,与其他基线相比,使用这些表征进行下游分类能带来更高的数据效率和学习速度,同时保持较低的参数复杂度。最后,我们模型的模块化结构有利于解释性,使我们能够在探索过程中探究其内部机制和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信