1D Vertical Ferroelectricity in Functionalized Carbon/Boron Nitride Nanotubes

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Dong Wang, Changsheng Song, Tingting Zhong, Menghao Wu
{"title":"1D Vertical Ferroelectricity in Functionalized Carbon/Boron Nitride Nanotubes","authors":"Dong Wang, Changsheng Song, Tingting Zhong, Menghao Wu","doi":"10.1002/pssb.202400013","DOIUrl":null,"url":null,"abstract":"Low‐dimensional ferroelectricity is long sought for post‐Moore nanoscale nonvolatile memory. Although a series of 2D ferroelectrics (FEs) have been experimentally confirmed in recent years, the investigations on 1D FEs are still rare. Stimulated by the experimental synthesis of single‐walled carbon/boron nitride nanotubes endohedrally doped by metal halides, our first‐principles calculations show that they can be the candidates for 1D FEs with switchable polarizations vertical to the tube axis as the inner metal halides form into polar zigzag chains. The polarization can be reversed via the migration of metal ions inside the wall, crossing a small barrier around several meV. Similar 1D vertical ferroelectricity in ternary boron carbonitride hybrid nanotubes that have already been synthesized is also predicted. In comparison, herein, polarization is switched by rolling the whole nanotube, which can be realized by applying just a local electric field induced by a tip due to its structural rigidity, which is long sought but remains challenging in current explorations on either conventional or low‐dimensional FEs.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Low‐dimensional ferroelectricity is long sought for post‐Moore nanoscale nonvolatile memory. Although a series of 2D ferroelectrics (FEs) have been experimentally confirmed in recent years, the investigations on 1D FEs are still rare. Stimulated by the experimental synthesis of single‐walled carbon/boron nitride nanotubes endohedrally doped by metal halides, our first‐principles calculations show that they can be the candidates for 1D FEs with switchable polarizations vertical to the tube axis as the inner metal halides form into polar zigzag chains. The polarization can be reversed via the migration of metal ions inside the wall, crossing a small barrier around several meV. Similar 1D vertical ferroelectricity in ternary boron carbonitride hybrid nanotubes that have already been synthesized is also predicted. In comparison, herein, polarization is switched by rolling the whole nanotube, which can be realized by applying just a local electric field induced by a tip due to its structural rigidity, which is long sought but remains challenging in current explorations on either conventional or low‐dimensional FEs.
功能化碳/氮化硼纳米管中的一维垂直铁电性
长期以来,人们一直在寻求低维铁电性用于后摩尔纳米级非易失性存储器。尽管近年来一系列二维铁电(FEs)已被实验证实,但对一维铁电的研究仍然很少。在实验合成单壁碳/氮化硼纳米管内掺杂金属卤化物的刺激下,我们的第一原理计算表明,这些纳米管可以成为一维铁电体的候选材料,由于内部金属卤化物形成极性之字链,它们的极化可以垂直于管轴进行切换。极化可通过金属离子在管壁内的迁移而逆转,并跨越几 meV 左右的小障碍。已经合成的三元碳氮化硼杂化纳米管也具有类似的一维垂直铁电性。相比之下,在本文中,极化是通过滚动整个纳米管来切换的,由于纳米管的结构刚性,只需通过尖端施加一个局部电场就能实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信