Quantum Parallel Training of a Boltzmann Machine on an Adiabatic Quantum Computer

IF 4.4 Q1 OPTICS
Davide Noè, Lorenzo Rocutto, Lorenzo Moro, Enrico Prati
{"title":"Quantum Parallel Training of a Boltzmann Machine on an Adiabatic Quantum Computer","authors":"Davide Noè,&nbsp;Lorenzo Rocutto,&nbsp;Lorenzo Moro,&nbsp;Enrico Prati","doi":"10.1002/qute.202300330","DOIUrl":null,"url":null,"abstract":"<p>Despite the anticipated speed-up of quantum computing, the achievement of a measurable advantage remains subject to ongoing debate. Adiabatic Quantum Computers (AQCs) are quantum devices designed to solve quadratic uncostrained binary optimization (QUBO) problems, but their intrinsic thermal noise can be leveraged to train computationally demanding machine learning algorithms such as the Boltzmann Machine (BM). Despite an asymptotic advantage is expected only for large networks, a limited quantum speed up can be already achieved on a small <span></span><math>\n <semantics>\n <mrow>\n <mn>16</mn>\n <mo>×</mo>\n <mn>16</mn>\n </mrow>\n <annotation>$16\\times 16$</annotation>\n </semantics></math> BM is shown, by exploiting parallel adiabatic computation. This approach exhibits a 8.6-fold improvement in wall time on the <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>×</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$4\\times 4$</annotation>\n </semantics></math> Bars and Stripes dataset when compared to a parallelized classical Gibbs sampling method, which has never been outperformed before by quantum approaches.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the anticipated speed-up of quantum computing, the achievement of a measurable advantage remains subject to ongoing debate. Adiabatic Quantum Computers (AQCs) are quantum devices designed to solve quadratic uncostrained binary optimization (QUBO) problems, but their intrinsic thermal noise can be leveraged to train computationally demanding machine learning algorithms such as the Boltzmann Machine (BM). Despite an asymptotic advantage is expected only for large networks, a limited quantum speed up can be already achieved on a small 16 × 16 $16\times 16$ BM is shown, by exploiting parallel adiabatic computation. This approach exhibits a 8.6-fold improvement in wall time on the 4 × 4 $4\times 4$ Bars and Stripes dataset when compared to a parallelized classical Gibbs sampling method, which has never been outperformed before by quantum approaches.

Abstract Image

绝热量子计算机上的玻尔兹曼机量子并行训练
尽管量子计算的速度有望加快,但能否实现可衡量的优势仍存在争议。绝热量子计算机(AQC)是专为解决二次无约束二元优化(QUBO)问题而设计的量子设备,但其内在热噪声可用于训练计算要求极高的机器学习算法,如波尔兹曼机(BM)。尽管预计只有大型网络才具有渐进优势,但通过利用并行绝热计算,小型波尔兹曼机已经实现了有限的量子加速。与并行化的经典吉布斯采样方法相比,这种方法在 "Bars and Stripes "数据集上的挂壁时间提高了 8.6 倍,而量子方法在这一数据集上的表现从未超过经典吉布斯采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信