Thu Phuong Nguyen, Thi Thom Nguyen, Thi Nam Pham, Thi Hai Do, Magdalena Osial, Minh Khoi Le, Hong Nam Nguyen, Phuong Thu Le, Thi Mai Thanh Dinh
{"title":"Metal organic framework composite based on CuBTC/SPION for application in methylene blue adsorption","authors":"Thu Phuong Nguyen, Thi Thom Nguyen, Thi Nam Pham, Thi Hai Do, Magdalena Osial, Minh Khoi Le, Hong Nam Nguyen, Phuong Thu Le, Thi Mai Thanh Dinh","doi":"10.1002/clen.202300018","DOIUrl":null,"url":null,"abstract":"<p>In this work, a composite (CuBTC/superparamagnetic iron oxide nanoparticles [SPION]) based on copper, benzene-1,3,5-tricarboxylic acid (CuBTC) and SPION was synthesized by electrochemical method for the magnetic separation of methylene blue (MB) from aqueous solutions. The synthesis of the proposed composite was carried out under various experimental conditions from 1.4 to 5.4 V for 1–5 h and subsequently studied using different techniques. Scanning electron microscopy showed a granular structure, whereas Brunauer–Emmett–Teller results revealed a well-developed surface area of around 182 m<sup>2</sup> g<sup>−1</sup>. Fourier transform infrared confirmed the presence of functional groups characteristic to CuBTC and Fe<sub>3</sub>O<sub>4</sub>, whereas X-ray diffraction revealed the phase structure of CuBTC 1D, CuBTC 3D, and Fe<sub>3</sub>O<sub>4</sub> in the obtained composite. Based on the experimental results, the sample synthesized under a potential of 1.4 V for 5 h was selected for MB adsorption studies in the function of adsorbent mass, contact time, solution pH, ionic strength, initial concentration, and temperature. The maximum adsorption capacity was 681 mg g<sup>−1</sup>, and the adsorption undergoes the Redlich–Peterson and Sips isotherm model. The results obtained for CuBTC/SPION indicate that the nanocomposite is a promising adsorbent for removing MB in synthetic dye water and wastewater.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300018","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a composite (CuBTC/superparamagnetic iron oxide nanoparticles [SPION]) based on copper, benzene-1,3,5-tricarboxylic acid (CuBTC) and SPION was synthesized by electrochemical method for the magnetic separation of methylene blue (MB) from aqueous solutions. The synthesis of the proposed composite was carried out under various experimental conditions from 1.4 to 5.4 V for 1–5 h and subsequently studied using different techniques. Scanning electron microscopy showed a granular structure, whereas Brunauer–Emmett–Teller results revealed a well-developed surface area of around 182 m2 g−1. Fourier transform infrared confirmed the presence of functional groups characteristic to CuBTC and Fe3O4, whereas X-ray diffraction revealed the phase structure of CuBTC 1D, CuBTC 3D, and Fe3O4 in the obtained composite. Based on the experimental results, the sample synthesized under a potential of 1.4 V for 5 h was selected for MB adsorption studies in the function of adsorbent mass, contact time, solution pH, ionic strength, initial concentration, and temperature. The maximum adsorption capacity was 681 mg g−1, and the adsorption undergoes the Redlich–Peterson and Sips isotherm model. The results obtained for CuBTC/SPION indicate that the nanocomposite is a promising adsorbent for removing MB in synthetic dye water and wastewater.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.